摘要
针对工业硅凝固过程中杂质的富集与偏析行为,通过控制工业硅凝固过程的凝固速度,研究了工业硅中杂质的微观结构和分布规律.实验结果表明:凝固速度为2℃/min时,硅中杂质主要以FeAlSi、FeSi2、Si2Ti2V形式在晶界上富集;凝固速度4℃/min时,杂质主要以FeTiSi和VSi3形式存在.在此基础上,对比分析了凝固速度对工业硅中杂质偏析行为的影响规律,发现Ti和V的析出数量和析出比例受Si、Al、Fe三种元素析出量的影响:当Al的析出量小时,Ti和V的析出量增加,当Si与Fe的析出比Si∶Fe从4∶1变为6∶1时,Ti和V的析出比减小;Mn在工业硅中的扩散比较均匀,偏析量较小且未超过1%,不受凝固速度的影响.
At the concentration and segregation of impurities in MG-Si during solidification,the microstructure and distribution of impurities in metallurgical grade silicon has been investigated by controlling the solidification rate.The experimental results show that,when the solidification rate is 2℃/min,the impurities in silicon are mainly enriched in the form of FeAlSi,FeSi 2 and Si 2 Ti 2 V at grain boundaries,when solidification rate is 4℃/min,impurities mainly exist in the form of FeTiSi and VSi 3.On this basis,the influence of solidification rate on impurity segregation behavior in industrial silicon was compared and analyzed.It is found that the amount and proportion of precipitation of Ti and V are influenced by the amount of precipitation of Si,Al and Fe:when the amount of Al precipitation is small,the amount of Ti and V precipitation increases,when the precipitation ratio of Si to Fe changes from 4∶1 to 6∶1,the precipitation ratio of Ti and V decreases;the diffusion of Mn in MG-Si is relatively uniform,segregation is less than 1%,and it is not affected by solidification rate.
作者
宋向阳
文建华
马文会
魏奎先
谢克强
伍继君
雷云
SONG Xiangyang;WEN Jianhua;MA Wenhui;WEI Kuixian;XIE Keqiang;WU Jijun;LEI Yun(Key Laboratory (MOST) of Clean Utilization in Complex Non-ferrous Metal Resources,Kunming 650093,China;National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093,China;Faculty of Metallurgy and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China)
出处
《昆明理工大学学报(自然科学版)》
CAS
北大核心
2019年第4期5-10,共6页
Journal of Kunming University of Science and Technology(Natural Science)
基金
国家自然科学基金项目(51461027)
关键词
工业硅
偏析
凝固速度
微观结构
MG-Si
segregation
solidification rate
microstructure