摘要
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.
基金
supported by the National Natural Science Foundation of China (Grant Nos. 41672117 and 41503034)
the Hubei Provincial Natural Science Foundation of China (Project No. 2017CFA027)
the Open Subject of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral (Baojun Liu Geoscience Science Foundation) (DMSM2017084)
the Open Subject of the State Key Laboratory of Petroleum Resources and Prospecting (PRP/open-1509)