摘要
运用李雅普诺夫稳定性理论及分数阶微积分,采用滑模控制,分别研究了一类整数阶、分数阶的2维幸福模型R¨+βR^·+ω^2R=0、3维幸福模型R^…+aR¨+b(1-R^2)R^·+R=0的同步问题.无论是分数阶还是整数阶系统均可以很好地实现同步.研究表明:一定条件下,选取适当的控制器,可以实现情绪模型滑模混沌同步.数值仿真说明该方法的可行性与有效性.
Based on Lyapunov stability theory and fractional order calculus,using the sliding mode control,synchronization problem of a class of integer order and fractional order 2-dimensional R¨+βR^·+ω^2R=0 and 3-dimensional happiness model was studied.Both the fractional order and the integer order system could be synchronous.The research showed that the appropriate controller could be selected,and the sliding mode chaos synchronization of the emotion model could be realized.Numerical simulations results showed the approach was feasible and effective.
作者
王东晓
王战伟
WANG Dongxiao;WANG Zhanwei(College of Mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450046,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2019年第5期22-26,共5页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金青年基金资助项目(NSFC11501525)
河南省科技厅软科学基金资助项目(142400411192)
河南省高等学校青年骨干教师基金资助计划项目(2013GGJS-142)
河南省高等学校重点科研项目(15B110011)
关键词
分数阶系统
稳定性
同步
滑膜控制
fractional order systems
stability
synchronization
sliding mode control