期刊文献+

Phlogopite in mantle xenoliths and kimberlite from the Grib pipe,Arkhangelsk province,Russia:Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite 被引量:2

Phlogopite in mantle xenoliths and kimberlite from the Grib pipe,Arkhangelsk province,Russia:Evidence for multi-stage mantle metasomatism and origin of phlogopite in kimberlite
下载PDF
导出
摘要 We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths (garnet peridotite,eclogite and clinopyroxene-phlogopite rocks) and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle (SCLM) and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation (Phl1) occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation (Phl2) occurs as rims and outer zones that surround the Phl1 grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phl1,within the garnet peridotite and clinopyroxeneephlogopitexenoliths,is characterised bylow Ti and Cr contents (TiO2<1 wt.%,Cr2O3<1 wt.% andMg#=100×Mg/(MgtFe)>92) typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO2<1 wt.%,Cr2 O3<1 wt.% and Mg# = 100 × Mg/(Mg+ Fe)>92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimbe
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第5期1941-1959,共19页 地学前缘(英文版)
基金 financially supported by the Program for Development MSU.N.Korotaeva (Lomonosov Moscow State University) assisted with mineral microprobe analyses supported by the Russian President Grant for State Support of Young Russian Scientists (Project No.MK575.2017.5)to A.K.and N.L. by the Russian Foundation for Basic Research (Project No.16-05-00298a) by the Program of Basic Research of the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences
关键词 MANTLE METASOMATISM KIMBERLITE PHLOGOPITE MANTLE XENOLITHS MEGACRYSTS Mantle metasomatism Kimberlite Phlogopite Mantle xenoliths Megacrysts
  • 相关文献

参考文献1

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部