期刊文献+

基于IFTS的网络动态负载均衡方法 被引量:1

The Method of Network Dynamic Load Balancing Based on Intuitionistic Fuzzy Time Series
下载PDF
导出
摘要 针对网络负载均衡过程中节点负载变化趋势难以预测的问题,在分析网络负载模糊时序变化特性的基础上,设计了可变阶自循环误差校正机制,构建了网络负载直觉模糊时间序列(IFTS)预测模型,并将基于IFTS的负载预测与网络动态负载均衡相融合,提出了基于IFTS的网络动态负载均衡方法,有效地提升了网络负载预测精度,增强了动态负载均衡系统运行效率,改善了网络整体服务质量。并通过典型实例验证了该方法的有效性和优越性。 Aiming at the problem that the load changing trend of node is difficult to be predicted during network load balancing,on the basis of analyzing the fuzzy time sequence variation characteristics of network coad,the variable order self-circulation error correction mechanism is designed,and the intuitionistic fuzzy time series(IFTS) prediction model is defined for the network load. Meanwhile,by combining the load prediction based on IFTS with the dynamic load balancing theory,a new method of dynamic load balancing(DLB) based on IFTS is proposed,which effectively improves the network load prediction precision,improves the dynamic load balancing system work efficiency and improves the network overall service quality. Finally,the validity and superiority of the proposed method are verified by a typical example.
作者 任神河 郑寇全 关冬冬 惠军华 REN Shen-he;ZHENG Kou-quan;GUAN Dong-dong;XI Jun-hua(Xianyang Normal University,Xianyang 712000,China;Institute of Information and Communication,National University of Defense Technology,Xi’an 710106,China;Xi’an Flight Academy of Air Force,Xi’an 710306,China)
出处 《火力与指挥控制》 CSCD 北大核心 2019年第8期55-60,共6页 Fire Control & Command Control
基金 国家自然科学基金(61309022,61703426) 陕西省自然科学基金(2013JQ8031) 咸阳师范学院专项科研基金资助项目(XSYK17007)
关键词 直觉模糊集 时间序列 动态负载均衡 预测 intuitionistic fuzzy sets time sequences dynamic load balancing prediction
  • 相关文献

参考文献10

二级参考文献100

  • 1唐炎森.指数平滑预测公式与平滑系数[J].统计与信息论坛,1998,13(1):39-44. 被引量:17
  • 2李子木,陈艳丽,肖永伟.卫星数据链-卫星通信应用的新领域[J].无线电通信技术,2005,31(6):39-41. 被引量:7
  • 3赵东波,胡雪松,王晖.浅析构建一体化装备保障体系的途径[J].装甲兵工程学院学报,2006,20(2):26-28. 被引量:6
  • 4田绍亮,左明,吴绍伟.一种改进的基于动态反馈的负载均衡算法[J].计算机工程与设计,2007,28(3):572-573. 被引量:41
  • 5Harikrishnan K P, Misra R, Ambika G. Revisiting the box counting algorithm for the correlation di- mension analysis of hyperchaotic time series [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1):263-276. 被引量:1
  • 6Song Q, Chissom B S. Forecasting enrollments with fuzzy time series-Part I[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-9. 被引量:1
  • 7Singh S R. A computational method of forecasting based on high-order fuzzy time series [J]. Expert Systems with Applications, 2009, 36 ( 7 ): 10551 10559. 被引量:1
  • 8Bai E, Wong W K, Chu W C, et al. A heuristic time-invariant model for fuzzy time series forecasting [J]. Expert Systems with Applications, 2011, 38 (3) :2701-2707. 被引量:1
  • 9Aladag C H, Yolcu U, Egrioglu E. A high order fuzzy time series forecasting model based on adap rive expectation and artificial neural networks [J]. Mathematics and Computers in Simulation, 2010, 81(4) :875-882. 被引量:1
  • 10Li Sheng tun, Kuo Shu-ching, Cheng Yi-chung, et al. Deterministic vector long-term forecasting for fuzzy time series [J]. Fuzzy Sets and Systems, 2010, 161(13): 1852-1870. 被引量:1

共引文献59

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部