期刊文献+

基于稀疏贝叶斯学习的低信噪比DOA估计算法 被引量:1

Sparse Bayesian Learning for DOA estimation at low SNR
下载PDF
导出
摘要 针对波达方向估计算法在低信噪比情况下DOA估计精度普遍不高的问题,提出了一种基于伪噪声重采样技术和求根稀疏贝叶斯学习的离格模型下DOA估计算法。利用生成的伪随机噪声对数据矩阵进行多次重采样,结合求根稀疏贝叶斯学习和局部性能测试去除DOA估计产生的异常值,对所得DOA估计结果进行筛选。仿真结果表明,该算法在低信噪比情况下具有较高的估计精度,是一种有效的DOA估计算法。 Aiming at the problem that DOA estimation accuracy is generally not high under the condition of low SNR,the DOA estimation method based on pseudo noise resampling technique and rooted sparse Bayesian learning is proposed.The method firstly resamples the data matrix by using the generated pseudo-random noise,and then combines the root sparse Bayesian learning and local performance test to remove the outliers generated by the DOA estimation and filter the obtained DOA estimation results.The simulation results show that the proposed method has high estimation accuracy under low SNR,which indicates that the method is an effective DOA estimation algorithm.
作者 蒋留兵 荣书伟 车俐 JIANG Liubing;RONG Shuwei;CHE Li(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin 541004,China;School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2019年第3期218-222,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61561010) 广西自然科学基金(2017GXNSFAA198089) 广西重点研发计划(桂科AB18126003,AB16380316)
关键词 波达方向(DOA)估计 稀疏贝叶斯学习 伪噪声重采样 低信噪比 direction-of-arrival(DOA) estimation sparse Bayesian learning pseudo-noise resampling low SNR
  • 相关文献

参考文献1

二级参考文献14

  • 1Shawe-Tsylor J,Cristianini N.Kernel Methods for Pattern A-nalysis[M].London:Cambridge University Press,2004:47-82. 被引量:1
  • 2Vapnik V N.The nature of statistical learning theory[M].Springer,1995. 被引量:1
  • 3Tipping M E.Sparse kernel principal component analysis[M].Advances in Neural Information Processing Systems.MIT Press,2001. 被引量:1
  • 4Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C] ∥Proceedings Fifth Annual Workshop on Computational Learning Theory.1992:144-152. 被引量:1
  • 5Bishop C M,Tipping M E.Variational relevance vector ma-chines[C] ∥Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence.Morgan Kaufmann,2000:46-53. 被引量:1
  • 6Tipping M E,Faul A.Fast marginal likelihood maximization for sparse Bayesian models[C] ∥Proceedings Ninth International Workshop on Artificial Intelligence and Statistics.Key West,Florida,2003. 被引量:1
  • 7Thayananthan A.Template-based Pose Estimation and Tracking of 3D Hand Motion[D].Department of Engineering,University of Cambridge,September 2005. 被引量:1
  • 8Silva C,Ribeiro B.Scaling Text Classification with Relevance Vector Machines[C] ∥IEEE International Conference on Systems,Man and Cybernetics.2006:4186 -4191. 被引量:1
  • 9Demir B,Erturk S.Hyperspectral Image Classification Using Relevance Vector Machines[J].Geoscience and Remote Sen-sing Letters,IEEE,2007:586-590. 被引量:1
  • 10Nikolaev N,Tino P.Sequential relevance vector machine lear-ning from time series[C] ∥IEEE International Joint Conference on Neural Networks.2005:1308-1313. 被引量:1

共引文献20

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部