期刊文献+

多距离特征匹配的篡改图像检测算法 被引量:5

Tampering image detection algorithm of multi-distance feature matching
下载PDF
导出
摘要 为了解决当前篡改图像的检测算法主要依靠单一的特征进行描述以及欧几里德距离进行匹配,导致篡改图像的检测率较低的问题,以及在对图像复制粘贴后进行一系列后处理操作的篡改图像检测时,容易出现匹配错误和鲁棒性差的问题,采用一种多距离特征匹配的篡改图像检测算法。首先,对获取到的图像提取尺度不变特征变换(SIFT)特征,在SIFT特征待描述区域的基础上,提取具有权值旋转不变均匀性的局部二值模式(LBP)特征,构成特征描述子;其次,分别计算描述子之间的标准欧几里德距离、相关距离以及汉明距离,通过多距离匹配改进g2nn算法进行特征的初次匹配;最后,通过凝聚型分层特征聚类以及随机一致性(RANSAC)算法去除存在的错误匹配点,完成篡改图像的检测。在MICC-F220图像数据库上进行了测试,实验结果表明,与当前2种主流算法相比,总体准确率分别提高了2.86%和2.11%,对于缩放、旋转以及缩放+旋转的后处理均具有很好的鲁棒性,是一种研究复制粘贴后进行缩放和旋转后处理的篡改图像检测的有效方法。 In order to solve the problem that the detection algorithm of the current tampering image relies mainly on a single feature to describe and the Euclidean distance to match, the detection rate of the tampering image is comparatively low, and matching errors and poor robustness are prone to occur when a series of post processing tampering images are detected after copy paste images, a multi-distance feature matching detection algorithm is used in this paper. Firstly, the scale-invariant feature transform(SIFT) feature was extracted from the acquired image, and the local binary patterns(LBP) feature with the rotation invariance uniformity of the weight was extracted on the basis of the SIFT region to be described, so the feature descriptor was constructed. Secondly, the standard Euclidean distance, correlation distance and hamming distance were calculated respectively, and G2 NN algorithm was improved by multi-distance matching to perform the initial match of the feature. Finally, mismatched points were removed by condensed hierarchical feature clustering and random sample consensus(RANSAC) algorithm to complete tampering image detection.The test was carried out on the MICC-F220 image database with the result that the overall accuracy of the proposed algorithm is improved by 2.86% and 2.11% respectively compared with the two mainstream algorithms available. It is robust to scaling, rotation and scaling and rotation post-processing. It is an effective method to detect tampering image detection after copying and pasting and then performing scaling and rotation processing.
作者 张威虎 郑佳雯 郭明香 陶智慧 贺元恺 ZHANG Wei-hu;ZHENG Jia-wen;GUO Ming-xiang;TAO Zhi-hui;HE Yuan-kai(College of Communication and Information Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《西安科技大学学报》 CAS 北大核心 2019年第4期665-671,共7页 Journal of Xi’an University of Science and Technology
基金 陕西省自然科学基金(2017JM6102)
关键词 篡改图像检测 尺度不变特征变换 局部二值模式 多距离 特征匹配 tampering image detection SIFT LBP multi-distance feature matching
  • 相关文献

参考文献17

二级参考文献207

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2黄方军,黄继武.基于图像校准的通用型JPEG隐写分析[J].中国科学(F辑:信息科学),2009,39(4):383-390. 被引量:11
  • 3平玲娣,刘祖根,史烈,孙康.基于易变特征实现隐藏信息的盲检测[J].浙江大学学报(工学版),2007,41(3):374-379. 被引量:4
  • 4毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 5Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787. 被引量:1
  • 6Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72. 被引量:1
  • 7Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 8Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 9Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513. 被引量:1
  • 10Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. 被引量:1

共引文献257

同被引文献63

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部