期刊文献+

城市公路施工扬尘污染源定位模型构建研究

Construction of Dust Pollution Source Location Model in Urban Highway Construction
下载PDF
导出
摘要 通过对城市公路施工扬尘污染源定位检测,优化城市公路施工扬尘污染的治理效率,提出基于遥感图像监测的城市公路施工扬尘污染源定位检测模型。采用遥感成像技术进行城市公路施工扬尘污染的图像检测,对遥感图像进行多层次多方向的分割处理,采用空间块区域特征匹配方法对可疑污染点进行视觉特征标定,提取城市公路施工扬尘污染源的光谱特征量,根据特征的图谱差异性实现城市公路施工扬尘污染源定位。仿真结果表明,采用该方法进行城市公路施工扬尘污染源定位的智能性较高,定位准确性较好,克服了传统人工定位误差较高的问题。 Based on the location detection of dust pollution sources in urban highway construction and the optimization of the treatment efficiency of dust pollution in urban highway construction, a detection model based on remote sensing image is proposed for the location detection of dust pollution sources in urban highway construction. The remote sensing imaging technology is used to detect the dust pollution in urban highway construction, the remote sensing image is segmented in multi-level and multi-direction, and the space block region feature matching method is used to calibrate the visual feature of the suspected pollution point. The spectral characteristic quantity of dust pollution source in urban highway construction is extracted, and the location of dust pollution source in urban highway construction is realized according to the difference of characteristic map. The simulation results show that this method is more intelligent and accurate in locating dust pollution sources in urban highway construction, and overcomes the problem of high error in traditional manual positioning.
作者 雷晓平 王敏 Lei Xiaoping;Wang Min(Yangling Vocational & Technical College, Transportation and Surveying Engineering Branch, Yangling 712100, China)
出处 《环境科学与管理》 CAS 2019年第8期118-121,共4页 Environmental Science and Management
关键词 城市公路施工 扬尘污染 定位模型 遥感图像 urban highway construction dust pollution location model remote sensing image
  • 相关文献

参考文献9

二级参考文献65

  • 1杨义彬.成都市大气污染及气象条件影响分析[J].四川气象,2004,24(3):40-43. 被引量:18
  • 2Chao Wu,De-sheng Gu. High efficiency dust scrubbers for continuous miner in underground mines[J] 2000,Journal of Central South University of Technology(4):205~211 被引量:1
  • 3TAN J, WANG W X, FNEG M SH, et al. A New approach based on ncut clustering algorithm for signature segmentation [ J ]. AASRI Proeedia, 2012( 1 ) .. 14-20. 被引量:1
  • 4GUAN N, TAO D, I.UO Z, et al. Nonnegative patch alignment framework [J]. IEEE Transactions on Neural Networks ,2011, 22(8).,1218 -1230. 被引量:1
  • 5DELONG A, OSOKIN A, ISACK H N, et al. Fast approximate energy minimization with label costs.International Journal of Computer Vision[J]. 2012, 96 (1) :1-27. 被引量:1
  • 6FELZENSZWALB P F, HUTTENLOCHER D. Efficient graph based image segmentation [ J ] International Journal of Computer Vision, 2004, 59 (2) :167-181. 被引量:1
  • 7JOURLIN M, BREUGNOT J, ITTHIRAD F, et al. I.ogarithmie image processing for color images[J]. Logarithmic Image Processing for Color Images, 2011,168:65-107. 被引量:1
  • 8GOUINAUD H, GAVET Y, DEBAYLE J, et al. Color correction in the framework of color logarithmic image processing[J]. Image and Signal Processing and Analysis ( ISPA ), 2011 7th International Symposium , 2011 .. 129-133. 被引量:1
  • 9LI L, JIN L H, XU X Y,et al. Unsupervised color - texture segmentation based on muhiscale quaternion Gabor filters and splitting strategy [J]. Signal Processing,2013, 93 (9): 2559-2572. 被引量:1
  • 10SUBAKAN O, VEMURI B. A quaternion framework for color image smoothing and segmentation [J]. International Journal of Computer Vision, 2011,91 (3) .. 233-250. 被引量:1

共引文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部