期刊文献+

基于人工神经网络模型预测油炸外裹糊鱼块的丙烯酰胺含量 被引量:12

Prediction of Acrylamide Content in Fried Battered and Breaded Fish Nuggets Using Artificial Neural Network
下载PDF
导出
摘要 为实现对油炸外裹糊鱼块的丙烯酰胺含量的预测,采用响应面试验设计收集数据,建立以黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、大豆油品质、油炸温度、油炸时间为输入值,油炸外裹糊鱼块的丙烯酰胺含量为输出值的反向传播人工神经网络(back propagation artificial neural network,BP-ANN),预测外裹糊鱼块深度油炸过程丙烯酰胺含量的变化,并用训练集拟合,测试集评估模型的预测能力。结果显示,黄原胶和大豆纤维复配比例、外裹糊鱼块干燥时间、油炸温度、油炸时间对油炸外裹糊鱼块的丙烯酰胺含量均有显著影响,大豆油品质对油炸外裹糊鱼块中丙烯酰胺含量影响不显著。训练后的BP-ANN模型的相关系数R值为0.997,拟合良好,有很强的逼近能力;模型对新数据预测的误差较小,最大相对误差为5.34%,最小相对误差为0.12%,表明BP-ANN模型能准确预测油炸外裹糊鱼块的丙烯酰胺含量。 In this paper, the prediction of acrylamide contents in fried battered and breaded fish nuggets(BBFNs) was performed through the combination of response surface methodology(RSM) and back propagation artificial neural network(BP-ANN). RSM was utilized to collect the experimental data and a BP-ANN model was established to predict the changes in acrylamide content in BBFNs during deep-fat frying, where the ratio of xanthan gum to soybean fiber, drying time of BBFNs, soybean oil quality, frying temperature and time were considered as the input while acrylamide content was regarded as the output. Furthermore, the training set was used for model fitting and the test set was used to evaluate the prediction ability of the model. The results showed that the acrylamide content in fried BBFNs was obviously affected by the ratio of xanthan gum to soybean fiber, drying time of BBFNs, frying temperature and time. However, the quality of soybean oil had no significant influence on the acrylamide content in fried BBFNs. A correlation coefficient(R) of 0.997 for the ANN model after training was presented, indicating that the model is notably fitted and has a good approximation ability. Moreover, the model had slight prediction errors for new data with a maximum relative error of 5.34% and a minimum relative error of 0.12%, suggesting accurate prediction of the acrylamide content in fried BBFNs using BP-ANN.
作者 单金卉 陈季旺 刘言 王海滨 夏文水 熊幼翎 SHAN Jinhui;CHEN Jiwang;LIU Yan;WANG Haibin;XIA Wenshui;Youling L. XIONG(College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;Hubei Collaborative Innovation Center for Processing of Agricultural Products, Wuhan 430023, China;School of Food Science and Technology, Jiangnan University, Wuxi 214122, China)
出处 《食品科学》 EI CAS CSCD 北大核心 2019年第16期249-255,共7页 Food Science
基金 国家自然科学基金面上项目(31471612) 国家大宗淡水鱼产业技术体系建设专项(CARS-45) 湖北省农业成果转化基金项目(NZZ2018000014)
关键词 外裹糊鱼块 人工神经网络模型 深度油炸 丙烯酰胺含量 预测 battered and breaded fish nuggets artificial neural network model deep-fat frying acrylamide content prediction
  • 相关文献

参考文献18

二级参考文献232

共引文献514

同被引文献180

引证文献12

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部