期刊文献+

锂电池滞后特性与荷电状态估计方法研究 被引量:1

Research on hysteresis and state of charge estimation of lithium battery
下载PDF
导出
摘要 电池荷电状态估计是电池管理系统中的关键部分,针对这一问题,首先引入滞后模型对传统的电池等效电路模型进行改进,以便更好地模拟电池的滞后特性,提高模型的精度,再根据实验数据结合状态子空间辨识与最小二乘法对电池参数进行辨识,得到了使用的电池模型;在该模型基础上分别应用了扩展卡尔曼滤波和采样点卡尔曼滤波两种算法对电池SOC的估计效果及在估计精度、计算复杂度和鲁棒性等方面进行了比较,最终得出更适合该模型的SOC估计算法。 The estimation of state of charge of the battery is the key part of the battery management system. In order to solve this problem, the hysteresis model was introduced to improve the traditional battery equivalent circuit model, so as to simulate the hysteresis characteristics of the battery better and improve the precision of the model, and then based on the experimental data, the model parameters were identified combined with the state subspace identification and least squares method, obtaining the battery model. On the basis of this model, two algorithms of extended Kalman filter and Sampling-Point Kalman filter were used to estimate the battery SOC , and the estimation accuracy, computational complexity and robustness were compared, eventually obtaining the SOC estimation algorithmmore suitable for the model.
作者 齐志佳 袁学庆 李晓鹏 QI Zhi-jia;YUAN Xue-qing;LI Xiao-peng(Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang Liaoning 110016, China;Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang Liaoning 110016, China;University of Chinese Academy of Sciences, Beijing 110049, China)
出处 《电源技术》 CAS 北大核心 2019年第8期1300-1304,共5页 Chinese Journal of Power Sources
关键词 锂电池 荷电状态估计 滞后模型 扩展卡尔曼滤波 采样点卡尔曼滤波 Li-ion battery SOC estimation hysteresis model EKF SPKF
  • 相关文献

参考文献4

二级参考文献43

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:200
  • 2裴晟,陈全世,林成涛.基于支持向量回归的电池SOC估计方法研究[J].电源技术,2007,31(3):242-243. 被引量:13
  • 3文锋.纯电动汽车用锂离子电池组管理技术基础问题研究[D].北京:北京交通大学,2010. 被引量:12
  • 4李顶根,李竟成,李建林.电动汽车锂离子电池能量管理系统研究[J].仪器仪表学报,2007,28(8):1522-1527. 被引量:29
  • 5Aylor J H, Thieme A, Johnson B W. A battery state of charge indicator for electric wheelchairs[J]. IEEE Transactions on Industrial Electronics, 1992, 39(10): 398-409. 被引量:1
  • 6Tsutomu Y, Kazuaki S, Ken-Ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedinds of the 20th International Telecommunications Energy Conference, 1998:210-214. 被引量:1
  • 7Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the 19th International Electric Vehicle Symposium, 2002: 527-538. 被引量:1
  • 8Gregory L Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Partl. Background [J]. Journal of Power Sources, 2004,134(2): 252-261. 被引量:1
  • 9ThermoAnalytics Inc.. Battery modeling for HEV simulation by ThermoAnalytics Inc.http://www.thermoanalytics.com/suplaort/publications/battervmod elsdoc.html. 被引量:1
  • 10Rudolph van der Merwe, Eric Wan Kalman filters for probabilistic inference Sigma-point in dynamic state-space models[C]. Proceedings of the Workshop on Advances in Machine Learning, 2003: 1-27. 被引量:1

共引文献150

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部