期刊文献+

Active Source Seismic Identification and Automatic Picking of the P-wave First Arrival Using a Convolutional Neural Network 被引量:3

Active Source Seismic Identification and Automatic Picking of the P-wave First Arrival Using a Convolutional Neural Network
下载PDF
导出
摘要 In seismic data processing,picking of the P-wave first arrivals takes up plenty of time and labor,and its accuracy plays a key role in imaging seismic structures.Based on the convolution neural network(CNN),we propose a new method to pick up the P-wave first arrivals automatically.Emitted from MINI28 vibroseis in the Jingdezhen seismic experiment,the vertical component of seismic waveforms recorded by EPS 32-bit portable seismometers are used for manually picking up the first arrivals(a total of 7242).Based on these arrivals,we establish the training and testing sets,including 25,290 event samples and 710,616 noise samples(length of each sample:2 s).After 3,000 steps of training,we obtain a convergent CNN model,which can automatically classify seismic events and noise samples with high accuracy(>99%).With the trained CNN model,we scan continuous seismic records and take the maximum output(probability of a seismic event)as the P-wave first arrival time.Compared with STA/LTA(short time average/long time average),our method shows higher precision and stronger anti-noise ability,especially with the low SNR seismic data.This CNN method is of great significance for promoting the intellectualization of seismic data processing,improving the resolution of seismic imaging,and promoting the joint inversion of active and passive sources. In seismic data processing, picking of the P-wave first arrivals takes up plenty of time and labor, and its accuracy plays a key role in imaging seismic structures. Based on the convolution neural network(CNN), we propose a new method to pick up the P-wave first arrivals automatically. Emitted from MINI28 vibroseis in the Jingdezhen seismic experiment, the vertical component of seismic waveforms recorded by EPS 32-bit portable seismometers are used for manually picking up the first arrivals(a total of 7242). Based on these arrivals, we establish the training and testing sets, including 25,290 event samples and 710,616 noise samples(length of each sample: 2 s). After 3,000 steps of training, we obtain a convergent CNN model, which can automatically classify seismic events and noise samples with high accuracy(> 99%). With the trained CNN model, we scan continuous seismic records and take the maximum output(probability of a seismic event) as the P-wave first arrival time. Compared with STA/LTA(short time average/long time average), our method shows higher precision and stronger anti-noise ability, especially with the low SNR seismic data. This CNN method is of great significance for promoting the intellectualization of seismic data processing, improving the resolution of seismic imaging, and promoting the joint inversion of active and passive sources.
出处 《Earthquake Research in China》 CSCD 2019年第2期288-304,共17页 中国地震研究(英文版)
基金 sponsored by the National Key Research and Development Project(2018YFC1503202-01) the Emergency Management Project of the National Natural Science Foundation of China(41842042)
关键词 CNN Active source SEISMIC identification FIRST ARRIVAL PICKING ANTI-NOISE ability CNN Active source seismic identification First arrival picking Anti-noise ability
  • 相关文献

参考文献14

二级参考文献157

共引文献281

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部