期刊文献+

结合CNN和文本语义的漏洞自动分类方法 被引量:11

Automatic Classification of Vulnerabilities Based on CNN and Text Semantics
下载PDF
导出
摘要 为解决大规模漏洞分类问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的漏洞自动分类方法,借鉴深度学习的技术思想自动获取漏洞描述的相关局部特征,通过batchnorm规范化数据解决文本训练不稳定问题,进而实现漏洞类型的有效划分.实验表明,与传统方法相比,该方法在漏洞自动分类效率上能够得到显著的提高. Vulnerability classification technology is an important basis in information security vulnerability research,and is also an important means for effective management and control of vulnerability resources.In order to solve the problem of large-scale classification of vulnerabilities,an automatic vulnerability classification method was proposed based on convolutional neural network.Referring to the thought of deep learning,relevant local features of vulnerability description were acquired automatically,and the unstable problem of text training was solved through batchnorm normalized data,so as to realize the effective classification of vulnerabilities.Experiments show that compared with the traditional method,the efficiency of automatic classification of vulnerabilities can be improved to a certain degree with the proposed method.
作者 曲泷玉 贾依真 郝永乐 QU Long-yu;JIA Yi-zhen;HAO Yong-le(China Information Technology Security Evaluation Center,Beijing 100085,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第7期738-742,共5页 Transactions of Beijing Institute of Technology
关键词 卷积神经网络 漏洞分类 国家信息安全漏洞库 convoputional nered network vulnerability classification China national vulnerability database of information security
  • 相关文献

参考文献6

二级参考文献85

  • 1Abbott R,Chin J,Donnelley J,et al.Security Analysis andEnhancements of Computer Operating Systems[R].Washington DC,USA:US Department of Commerce,1976. 被引量:1
  • 2Bisbey II R,Hollingworth D.Protection Analysis:FinalReport[R].Marina Del Rey,USA:University of SouthernCalifornia,1978. 被引量:1
  • 3Bishop M,Bailey D.A Critical Analysis of VulnerabilityTaxonomies[R].Davis,USA:University of California atDavis,1996. 被引量:1
  • 4Christey S.The Preliminary List of Vulnerability Examplesfor Researchers[R].Bedford,USA:Mitre,2006. 被引量:1
  • 5Landwehr C,Bull A,Mcdemott J,et al.A taxonomy ofcomputer program security flaws[J].ACM ComputingSurveys,1994,26(3):211-254. 被引量:1
  • 6Aslam T,Krsul I,Spafford E.Use of a Taxonomy ofSecurity Faults[R].West Lafayette,USA:PurdureUniversity.1996. 被引量:1
  • 7CHEN Zhongqiang,ZHANG Yuan,CHEN Zhongrong.Acategorization framework for common computer vulnerabilitiesand exposures[J].The Computer Journal,2010,53(5):551-580. 被引量:1
  • 8LI Zhenmin,TAN Lin,WANG Xuanhui,et al.Have thingschanged now?An empirical study of bug characteristics inmodern open source software[C] //Proceedings of the 1stWorkshop on Architectural and System Support forImproving Software Dependability.San Jose,USA:ACM,2006:25-33. 被引量:1
  • 9Li Y L.An Approach towards Standardising VulnerabilityCategories[D].Pretoria,South Africa:University ofPretoria,2007. 被引量:1
  • 10刘晖,曹伟.国家漏洞库漏洞数据分析[C] //第二届信息安全漏洞分析与风险评估大会.北京:清华大学,2009:363-370. 被引量:1

共引文献652

同被引文献59

引证文献11

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部