期刊文献+

基于位置信息的老人异常状态检测技术研究 被引量:3

Research on the elderly abnormal state detection technology based on location information
下载PDF
导出
摘要 传统居家养老模式中,对独居老人的日常生活健康状况的监测及室内活动的异常行为检测,依赖于各种可穿戴传感器设备,易给老人造成行动不便和隐私问题。为此,提出一种基于位置信息的老人异常状态检测方法。该方法根据蓝牙信号的信号强度指示(Received Signal Strength Indication,RSSI)测距定位,获得老人当前位置,由交互式多模型的卡尔曼滤波方法实现老人在室内的移动轨迹跟踪;对老人在室内移动轨迹进行生理监测,而对老人突发异常状态,通过设置不同室内空间区域的时间阈值,以停留点检测方式进行判断。实验结果表明,该方法简单易于实现,且对于独居老人的日常监护方法优于传统可穿戴传感器设备。 In the traditional home-based pension mode,various wearable sensor devices are applied to monitor the health status of daily life and detect the abnormal behaviors in indoor activities of the elderly solitary,which easily causes moving inconvenience and privacy problems for the elderly.An abnormal status detection method based on location information is proposed in this paper for the elderly.The elderly current location can be obtained by range-finding and positioning by using this method on the basis of RSSI(Received Signal Strength Indication,RSSI)of Bluetooth signal,and the moving trajectory tracking and physiological monitoring of the elderly in indoor can be achieved by applying the interactive multi-model Kalman filtering method.The time threshold values of different indoor space areas were set to judge the burst abnormal state of the elderly by means of the detection of stopping points.The experiment results show that the proposed scheme is simple and easy to implement,and the daily monitoring method for the elderly solitary is better than the traditional wearable sensor devices.
作者 王长清 冯惠粉 丰明奎 WANG Changqing;FENG Huifen;FENG Mingkui(School of Electronics and Electrical Engineering,Henan Normal University,Xinxiang 453007,China;Key Laboratory of Photoelectric Sensing Integrated Application of Henan Province,Xinxiang 453007,China)
出处 《现代电子技术》 北大核心 2019年第16期182-186,共5页 Modern Electronics Technique
基金 国家自然科学基金联合基金项目:甚低频信号传播方法预报地震的模型研究(U1704134)~~
关键词 独居老人 异常状态检测 低功耗蓝牙技术 异常状态判断 轨迹跟踪 生理监测 停留点检测 elderly solitary abnormal state detection low-power Bluetooth abnormal state judgement trajectory tracking physiology monitoring stopping point detection
  • 相关文献

参考文献10

二级参考文献34

  • 1钟仁耀.上海市独居老人生活状况分析及其对策[J].社会科学,2004(8):66-70. 被引量:23
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3李建新.老年人口生活质量与社会支持的关系研究[J].人口研究,2007,31(3):50-60. 被引量:140
  • 4谢少飞,席淑华,金荣,朱丽妹.社区高龄独居老人健康状况调查[J].解放军护理杂志,2007,24(12B):31-32. 被引量:18
  • 5Noury N, Fleury A, Rumeau P, et al. Fall Detection-principles and Methods [C]//29^th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, Lyon, France, 2007 : 1663-1666. 被引量:1
  • 6Qiang L, John A, Mark A, et al. Accurate, Fast Fall Detection Us- ing Gyroscopes and Accelerometer-derived Posture Information [C]//6th International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, 2009 : 138-143. 被引量:1
  • 7Anderson D, Keller J, Skubic M, et al. Recognizing Falls from Sil- houettes [C]//Annual Int.Conf. of the Engineering in Medicine and Biology Society, New York, NY USA, 2006 : 6388-6391. 被引量:1
  • 8Cucehiara R, Prati A, Vezzani R. A Multi-camera Vision System for Fall Detection and Alarm Generation [J]. Expert Systems, 2007,24(5) :334-345. 被引量:1
  • 9Litvak D, Zigel Y, Gannot I. Fall Detection of Elderly Through Floor Vibrations and Sound [C ]//30th Annual International Con- ference of the IEEE-Engineering in Medicine and Biology. Van- couver Canada, 2008 : 4632-4635. 被引量:1
  • 10Kawatsu C, Jiaxing L, Chung C J. Development of a Fall Detection System with Microsoft Kinect [J]. Robot Intelligence Technology and Applications, 2012 : 623-630. 被引量:1

共引文献51

同被引文献36

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部