期刊文献+

IPTV用户体验异常的自动化检测 被引量:2

Automated anomaly detection of IPTV user experience
下载PDF
导出
摘要 IPTV系统架构复杂,涉及大量终端、网元和连接等。为此,运营商建立了较为完善的监控体系,特别是采集了海量的EPG体验数据,形成多维度的监控指标,旨在监控用户体验水平。然而,监控指标繁多,导致运维人员监察各项指标费时费力,无法及时发现异常,也难以确定异常原因。为解决上述人工运维的痛点,采用一种智能异常检测方法,并根据实际应用进行改进,高效地实现对海量数据的实时分析。实践表明,该方法计算成本较低,适应现网异常变化,快速准确地检测异常,从而减少人力成本,提高运维效率,推进智能运维。 Architecture of IPTV system is complex, involving a large number of terminals, network elements and connections. Therefore, a relatively complete monitoring system, which collected massive EPG experience data and formed multi-dimensional monitoring indicators, had been established to monitor user experience. Due to a large number of indicators, manual monitoring was time consuming and laborious. It was hard to detect anomalies in time and it was impossible to determine the cause of abnormality. To solve the pain points of the operation, an intelligent algorithm was implied and improved to analyze massive experience data. The practice indicates that the algorithm with low calculation cost adapts to abnormal changes in the network and detect anomalies accurately and quickly,which reduces labor costs, improves operation efficiency and promotes intelligent operation.
作者 谭晓敏 方艾 金铎 李长江 TAN Xiaomin;FANG Ai;JIN Duo;LI Changjiang(Guangzhou Research Institute of China Telecom Co.,Ltd.,Guangzhou 510630,China)
出处 《电信科学》 2019年第7期159-164,共6页 Telecommunications Science
关键词 IPTV EPG 自动异常检测 智能运维 IPTV EPG automated anomaly detection intelligent operation
  • 相关文献

参考文献6

二级参考文献29

  • 1翁小清,沈钧毅.基于滑动窗口的多变量时间序列异常数据的挖掘[J].计算机工程,2007,33(12):102-104. 被引量:16
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3YANG Q,WU X.10 challenging problems in data mining research [J].International Journal of Information Technology and Decision Making,2006,5(4):597-604. 被引量:1
  • 4HAN J,KAMBER M,PEI J.Data mining:concepts and tech-niques [M].Waltham:Morgan Kaufmann Publishers,2006. 被引量:1
  • 5GAO B,MA H Y,YANG Y H.HMMs(Hidden Markov Models) based on anomaly intrusion detection method [C]// Proceedings of the 2002 International Conference on Machine Learning and Cybernetics.Piscataway:IEEE Press,2002:381-385. 被引量:1
  • 6CHANDOLA V,BANERJEE A,KUMAR V.Anomaly detection:a survey [J].ACM Computing Surveys,2009,41(3):15. 被引量:1
  • 7RAMASWAMY S,RASTOGI R,SHIM K.Efficient algorithms for mining outliers from large data sets [C]// ACM SIGMOD Record,2000,29(2):427-438. 被引量:1
  • 8BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers [J].ACM SIGMOD Record,2000,29(2):93-104. 被引量:1
  • 9MOUNCE S R,MOUNCE R B,BOXALL J B.Novelty detection for time series data analysis in water distribution systems using support vector machines[J].Journal of Hydroinformatics,2011,13(4):672-686. 被引量:1
  • 10BUDALAKOTI S,SRIVASTAVA A,AKELLA R,et al.Anomaly detection in large sets of high-dimensional symbol sequences,NASA TM-2006-214553 [R].Moffett Field:NASA Ames Research Center,2006. 被引量:1

共引文献54

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部