摘要
为了保证机械产品及其装配过程符合规范,须对产品装配过程的偏差传递流进行建模,识别关键装配特征并对相应误差装配节点进行溯源及控制.提出基于复杂网络的自调节偏差传递网络建模方法与误差溯源方法,结合装配过程中的实测数据、特征表面信息以及装配工艺流程构建加权自调节偏差传递网络.利用改进的加权半局部中心性排序算法识别偏差传递网络中的关键特征.提出逆向回溯算法以及重要度排名(IR)指标,在加权自调节偏差传递网络中识别出关键特征的误差源,以确定须进行重点监控的装配面.以锥齿轮轴组件的多阶段装配过程为研究对象进行验证,结果表明利用所提出的方法可对多阶段装配过程中的偏差流进行有效建模,识别关键装配面,实施误差溯源.
To ensure the quality of mechanical products and the assembling process,it is necessary to model the variation propagation flow of the assembly process,identify the key assembly characteristics and control the corresponding error assembling nodes and the error source.A method of modeling and error tracing based on the complex network was proposed.The method was used to construct a self-regulated weighted variation propagation network,taking into account the measured data,the information of characteristic surfaces and the assembly technology in the assembly process.The improved weighted semi-local centrality sorting algorithm was used to identify the key characteristics of the constructed variation propagation network.The backtracking algorithm and the importance rank(IR)index were proposed to identify the error source of the key characteristics in the constructed self-regulated weighted variation propagation network,after which the assembly surfaces which need to be monitored could be distinguished.With the multistage assembly process of a gear shaft as a study case,the proposed method was verified.The method can be used to effectively model the variation flow,as well as identify the key assembly surface and the error source in the multistage assembly process.
作者
祝鹏
余建波
郑小云
王永松
孙习武
ZHU Peng;YU Jian-bo;ZHENG Xiao-yun;WANG Yong-song;SUN Xi-wu(School of Mechanical Engineering,Tongji University,Shanghai 201804,China;Shanghai Aerospace Equipment Manufacturing Factory,Shanghai 201100,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2019年第8期1582-1593,共12页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(51375290,71777173)
中央高校基本科研业务费资助项目(22120180068)
上海科委创新科技行动计划资助项目(17511109204)
关键词
多阶段装配
偏差流
复杂网络
关键装配特征
误差溯源
multistage assembly
variation flow
complex network
key assembly characteristics
error source identification