期刊文献+

基于FPGA的卷积神经网络加速器设计与实现 被引量:9

Design and implementation of convolution neural network accelerator based on FPGA
下载PDF
导出
摘要 FPGA已广泛用于卷积神经网络的硬件加速器的实现.本文设计了一种基于FPGA的卷积神经网络加速器.主要利用卷积神经网络中固有的并行性来减少实时嵌入式应用所需带宽与资源使用,并将其在有限资源的ZC706开发板上实现,结果显示,在150 MHz的工作频率下,FPGA的峰值运算速度达到0.54 GOP/s,且功耗很小. FPGAs are widely used in the implementation of hardware accelerators for convolutional neural networks. This paper designs a FPGA-based CNN acceleration structure. It mainly utilizes the inherent parallelism in CNN to reduce the bandwidth and resource usage required by real-time embedded applications, and implements it on the ZC706 development board with limited resources. The results show that the FPGA operates at a frequency of 0. 54 GOP/s and consumes very little power at 150 MHz.
作者 翟社平 邱程 杨媛媛 李婧 江婷婷 ZHAI Shaping;QIU Cheng;YANG Yuan-yuan;LI Jing;JIANG Ting-ting(School of Computer Science and Technology,Xi'an University of Posts and Telecommunications,Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing,Xi'an 710121,China)
出处 《微电子学与计算机》 北大核心 2019年第8期83-86,共4页 Microelectronics & Computer
基金 工业和信息化部通信软科学项目(2018-R-26) 陕西省社会科学基金(2016N008) 西安市社会科学规划基金(17X63) 西安邮电大学研究生创新基金项目(CXJJ2017062)
关键词 卷积神经网络 现场可编程门阵列 加速器 有限资源 convolutional neural network field-programmable gate array accelerator limited resources
  • 相关文献

参考文献1

二级参考文献68

  • 1LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 被引量:1
  • 2HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. 被引量:1
  • 3LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616. 被引量:1
  • 4HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525. 被引量:1
  • 5KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114. 被引量:1
  • 6GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587. 被引量:1
  • 7LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440. 被引量:1
  • 8SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf. 被引量:1
  • 9SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 1-8. 被引量:1
  • 10HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [EB/OL]. [2016-01-04]. https://www.researchgate.net/publication/286512696_Deep_Residual_Learning_for_Image_Recognition. 被引量:1

共引文献550

同被引文献51

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部