期刊文献+

SGS传感器供电电路和数字滤波器设计及其实验验证

Design and experimental verification of SGS sensor power supply circuit and digital filter
下载PDF
导出
摘要 为了提高SGS传感器的集成效果,对其供电电路和数字滤波器进行设计并开展实验验证。设计的SGS传感器采用基准稳压源ADR4550作为供电电源,选择精密运放ADA4622完成基准源的放大缓冲过程。设计的数字滤波器包括有限长单位冲激响应(FIR)滤波器与无限脉冲响应(IIR)滤波器,通过Matlab来封装函数FIR并采用经典方法实现加窗线性相位FIR滤波器的功能。实验验证结果得到:供电电源输出波形,输出电压噪声峰值在0.7mV内,供电电源具备良好的稳定性。压电陶瓷的输出位移及其位移与输出电压的非线性误差在0.05%以内,均方根误差等于1.718mV。 In order to improve the integrated effect of SGS sensor,the power supply circuit and digital filter were designed and tested.The SGS sensor in this design uses the reference voltage regulator ADR4550 as the power supply,and the precision operational amplifier ADA4622 is selected to complete the amplification and buffering process of the reference source.Digital filter design including finite length unit impulse response(FIR)filter and infinite impulse response(IIR)filter,Matlab to encapsulate function FIR and classical method to achieve the window linear phase FIR filter function.Experimental results show that the power supply output waveform,output voltage noise peak in 0.7 mV,the power supply has good stability.The output displacement of the piezoelectric ceramics and the nonlinear error between the displacement and the output voltage are within 0.05%,and the root-mean-square error is equal to 1.718 mV.
作者 郝宁 孙耀芹 于佳 王新娜 林琳 HAO Ning;SUN Yaoqin;YU Jia;WANG Xinna;LIN Lin(Baoding Technical College of Electric Power;Skills Training Center,State Grid Jibei Electric Power Company Limited,Hebei Baoding 071000,China;Zhangjiakou Shengyuan Power Supply Service Co.,Ltd.,Hebei Zhangjiakou 075300,China)
出处 《工业仪表与自动化装置》 2019年第4期43-45,49,共4页 Industrial Instrumentation & Automation
关键词 SGS传感器 供电电路 数字滤波 实验验证 SGS sensor power supply circuit digital filtering experimental verification
  • 相关文献

参考文献11

二级参考文献54

  • 1秦祖荫.霍尔电流传感器的性能及其使用[J].电力电子技术,1994,28(4):63-65. 被引量:23
  • 2闫良海,吴金,庞坚,姚建楠.LDO过流与温度保护电路的分析与设计[J].电子器件,2006,29(1):127-129. 被引量:23
  • 3刘国巍.低功耗无线温度传感器的设计与实现[J].工矿自动化,2007,33(4):72-74. 被引量:7
  • 4Li P,Wen Y M,Yin W J,Wu H Z.An up-conversion management circuit for low-frequency vibrating energy harvesting[J].IEEE Transactions on Industrial Electronics,2014,61(7):3349-3358. 被引量:1
  • 5Darwish A,Hassanien A E.Wearable and implantable wireless sensor network solutions for healthcare monitoring[J].Sensors,2011,11(6):5561-5595. 被引量:1
  • 6Davide B,Clemens M,Lothar T.Design of a solar-harvesting circuit for batteryless embedded systems[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2009,56(11):2519-2528. 被引量:1
  • 7Dai X,Wen Y,Li P.Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite harvesters[J].Sensors and Actuators A:Physical,2011,166(1):94-101. 被引量:1
  • 8Khaligh A,Zeng P,Zhong C.Kinetic energy harvesting using piezoelectric and electromagnetic technologies-state of the art[J].IEEE Transactions on Industrial Electronics,2010,57(3):850-860. 被引量:1
  • 9Carmo J P,Goncalves L M,Luis M.Thermoelectric microconverter for energy harvesting systems[J].IEEE Transactions on Industrial Electronics,2010,57(3):861-867. 被引量:1
  • 10Li P,Wen Y M,Liu P G.A magnetoelectric energy harvester and management circuit for wireless sensor network[J].Sensors and Actuators A:Physical,2010,157(1):100-106. 被引量:1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部