期刊文献+

二阶线性微分方程解与不动点的关系

The Relation Between Solutions of Second Order Linear Differential Equation with Fixed Points
下载PDF
导出
摘要 使用Nevanlinna值分布的基本理论和方法,研究了几类二阶线性微分方程解及解的导数与其不动点之间的关系,得到了方程解及其导数的不动点的不同点收敛指数为无穷和二级收敛指数等于解的超级的精确结果. It was investigated that the relations between solutions of second order linear differential equations and their derivatives with fixed point by by using the theory and the method of Nevanlinna value distribution.The precision result was obtained that convergence exponents of various points of equation solutions and their derivatives fetch the fixed point is infinite and the second order convergence exponents with the hyper order of solution is equal.
作者 龚攀 石黄萍 程国飞 GONG Pan;SHI Huangping;CHENG Guofei(School of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, China)
出处 《应用泛函分析学报》 2019年第2期162-170,共9页 Acta Analysis Functionalis Applicata
基金 江西省教育厅科技计划项目(151051) 上饶师范学院自然科学基金(201606)
关键词 微分方程 整函数 超级 二级收敛指数 不动点 differential equation entire function hyper-order 2th exponents of convergence fixed point
  • 相关文献

参考文献7

二级参考文献28

  • 1陈宗煊,孙光镐.一类二阶微分方程的解和小函数的关系[J].数学年刊(A辑),2006,27(4):431-442. 被引量:29
  • 2Hayman W. Meromorphic Function. Oxford: Clarendon Press, 1964. 被引量:1
  • 3Yang Lo. Value Distribution Theory and New Research. Beijing: Science Press, 1982(in Chinese). 被引量:1
  • 4Yi Hongxun, Yang Chungchun. The Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995 (in Chinese). 被引量:1
  • 5Hille E. Ordinary Differential Equations in the Complex Domain. New York: Wiley, 1976. 被引量:1
  • 6Frei M. Uber die subnormalen losungen der differentialgleichung w″ + e^-Zw′ + (konst.)w = 0. Comment Math Helv, 1962, 36:1-8. 被引量:1
  • 7Ozawa M. On a solution of w″ + e^-Zw′ + (az + b)w = 0. Kodai Math J, 1980, 3: 295-309. 被引量:1
  • 8Gundersen G. On the question of whether f″+ e^-Zf′ + B(z)f = 0 can admit a solution f≠ 0 of finiteorder. Proc R S E, 1986, 102A: 9-17. 被引量:1
  • 9Langley J K. On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9:430-439. 被引量:1
  • 10Amemiya I, Ozawa M. Non-existence of finite order solutions of w″+ e^-Zw′+ Q(z)w = 0. Hokkaido Math J, 1981, 10:1-17. 被引量:1

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部