期刊文献+

交通视频图像去雾算法研究 被引量:1

Research on defogging algorithm of traffic video image
下载PDF
导出
摘要 针对图片去雾算法应用于视频图像处理时存在的实时性差和去雾效果不好等问题,提出了一种雾天交通视频的优化去雾算法。该算法首先识别出运动目标,仅针对选中的运动目标进行去雾,可有效提高去雾的效率和实时性。利用视频图像中运动物体前后帧关联的特点,在传统暗原色先验去雾算法的基础上,对图像进行重构。实验结果表明,该算法不仅可以提高视频图像的去雾效率和实时性,而且还可明显增强运动目标的去雾效果和清晰度,为运动目标信息提取奠定基础。 Aiming at the problems of image defogging algorithm applied to video image processing,such as poor real-time performance and poor defogging effect,this paper proposes an optimized defogging algorithm for foggy traffic video. The algorithm first recognizes the moving target and defogges only the selected moving target,which can effectively improve the efficiency and real-time of the defogging. Based on the characteristics of the frame association before and after the moving object in the video image,the image is reconstructed based on the traditional dark primary color prior defogging algorithm. The experimental results show that the proposed algorithm can not only improve the defogging efficiency and real-time performance of video images,but also significantly enhance the defogging effect and clarity of moving targets,and lay a foundation for the extraction of moving target information.
作者 王一璇 黎英 Wang Yixuan;Li Ying(Information Engineering and Automation School,Kunming University of Science and Technology,Kunming 650000,China)
出处 《电子测量技术》 2019年第12期118-121,共4页 Electronic Measurement Technology
关键词 交通监控视频 目标检测 去雾 图像配准 traffic surveillance video target detection defogging image registration
  • 相关文献

参考文献5

二级参考文献62

  • 1应小凡,褚振勇,田红心,易克初.多载波扩频系统中单音干扰抵消的新方法[J].电波科学学报,2005,20(1):95-99. 被引量:7
  • 2Borman S,Stevenson R. Spatial resolution enhancement of low-resolution image sequences: a comprehensive review with directions for future research[R]. Lab. Image and Signal Analysis,University of Notre Dame, Tech. Rep., 1998. 被引量:1
  • 3Borman S and Stevenson R L. Super-resolution from image sequences-a review[R]. In Proc. 1998 Midwest Symp. Circuits and Systems, 1999:374-378. 被引量:1
  • 4Chaudhuri S. Super-resolution imaging[Z]. Norwell, MA: Kluwer,2001. 被引量:1
  • 5Park S C,Park M K,Kang M G. Super-resolution image reconstruction: a technical review[J]. IEEE signal processing magazine, 2003, (5):21-36. 被引量:1
  • 6Capel D. Image mosaicing and super-resolution[Z]. Spinger,2004. 被引量:1
  • 7Borman S. Topics in multiframe superresolution restoration[Z].Dissertation, 2004. 被引量:1
  • 8Tsai R Y and Huang T S. Multipleframe image restoration and registration[A]. Advances in computer vision and image processing. Greenwich, CT: JAI Press Inc., 1984: 317-339. 被引量:1
  • 9Kim S P, Bose N K, and Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes[J]. IEEE Trans. Acoust., Speech,Signal Processing, 1990,38(6):1 013-1 027. 被引量:1
  • 10Kim S P and Su W Y. Recursive high-resolution reconstruction of blurred multiframe images[J]. IEEE Trans. Image Processing,1993,2(10):534-539. 被引量:1

共引文献85

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部