期刊文献+

基于相似度聚类的网络异常快速识别方法研究

Research on Network Anomaly Fast Recognition Method Based on Similarity Clustering
下载PDF
导出
摘要 传统网络异常识别方法速度慢、准确率低。为此,笔者提出基于相似度聚类的网络异常快速识别方法,经过详细分析相似度聚类算法,提出网络异常快速识别五步流程;并对网络安全权限机制识别和签名机制进行强化设计。实验对比表明,提出的识别方法能在短时间内识别网络异常,准确率高,对于保证网络安全有重要意义。 The traditional network anomaly identification method is slow and has low accuracy. This paper proposes a network anomaly fast recognition method based on similarity clustering. After analyzing the similarity clustering algorithm in detail, a five-step process for network anomaly fast identification is proposed. The network security authority mechanism identification and signature mechanism are enhanced. The experimental comparison shows that the identification method can identify network anomalies in a short time, and the accuracy is high, which is of great significance for ensuring network security.
作者 李伟民 Li Weimin(Department of Computer Science,Sias International University,Zhengzhou University,Xinzheng Henan 451100,China)
出处 《信息与电脑》 2019年第9期117-118,共2页 Information & Computer
基金 基于机器学习的电动汽车续航里程估计的研究(项目编号:182102210549)
关键词 相似度聚类 网络异常 异常识别 快速识别 识别方法 similarity clustering network anomaly anomaly identification quick identification recognition methods
  • 相关文献

参考文献3

二级参考文献21

  • 1薛为民,陆玉昌.文本挖掘技术研究[J].北京联合大学学报,2005,19(4):59-63. 被引量:63
  • 2张建华,江贺,张宪超.蚁群聚类算法综述[J].计算机工程与应用,2006,42(16):171-174. 被引量:41
  • 3孙爽,章勇.一种基于语义相似度的文本聚类算法[J].南京航空航天大学学报,2006,38(6):712-716. 被引量:18
  • 4MararetH.Dunham.数据挖掘教程[M].郭崇慧,田凤占,靳晓明,译.北京:清华大学出版社,2005:107-138. 被引量:1
  • 5A Dorigo, M Dorigo, V Maniezzo. Distributed optimization by ant colonies [ C ]. In: European Conference on Artificial Life, 1991 : 134-142. 被引量:1
  • 6N. Labroche, N. Monmarche,and G. Venturini, A new clustering algorithm based on the chemical recognition system of ants, in Proc. of 15th European Conference on Artificial Intelligence( ECAI 2002), Lyon FRANCE, 2002:345 -349. 被引量:1
  • 7N. Labroche, N. Monmarche, and G. Venturini, AntClust: ant clustering and web usage mining. Proc. of the GECCO Conference, Chicago, 2003. 被引量:1
  • 8Parag M Kanade, Lawrence O Hall. Fuzzy ants as a clustering concept: proc of the 22nd International Conference of the North American Fuzzy Information Processing Society [ C ]. 2003. 227 - 232. 被引量:1
  • 9Yang Y, Kamei M. Clustering ensemble using swarm intelligence:IEEE Swarm Intelligence Symposium[ M ]. Piscataway, N J: IEEE Service Center, 2003.65 -71. 被引量:1
  • 10SONG Shao-xu,LI Chun-ping.TCUAP:a novel approach of text clustering using asymmetric proximity[C] //Proc of IICAI.2005:676-685. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部