期刊文献+

基于多类型无人机数据的红树林遥感分类对比 被引量:22

Comparison of Mangrove Remote Sensing Classification Based on Multi-type UAV Data
下载PDF
导出
摘要 使用固定翼无人机、消费级旋翼无人机和专业级旋翼无人机获取广东珠海淇澳岛红树林保护区多类型无人机遥感影像,使用基于面向对象分类的K-最近邻与随机森林分类器对研究区影像进行红树林树种精细分类和对比分析,并探讨了不同类型无人机平台在红树林资源调查应用中的优缺点。结果表明:1)固定翼无人机、消费级旋翼无人机和专业级旋翼无人机数据使用K-最近邻法的分类精度分别为:73.8%、72.8%和79.7%;使用随机森林法的分类精度分别为:81.1%、84.8%和89.3%。3种平台类型的无人机数据均适用于红树林精细分类研究,对于无人机红树林遥感数据,随机森林的分类方法优于K-最近邻方法。2)以拍摄面积与用时之比估算采集效率,固定翼无人机、消费级旋翼无人机和专业级旋翼无人机分别为0.036、0.013和0.003 km2/mmo固定翼无人机的采集效率具有明显优势。3)固定翼无人机适合大范围红树林数据采集,要求较高;消费级旋翼无人机适于获取小范围精细数据,成本低且易学易用;专业级旋翼无人机适合搭载质量稍大的如成像光谱仪、LiDAR等专业传感器获取多源数据。最后给出了无人机在红树林遥感研究中的注意事项和建议。 Mangroves have important ecological fiinctions. Where damage to mangroves is severe, remote sensing can be used to monitor the situation and provide information to support mangrove protection and resource management. Remote sensing using Unmanned Aerial Vehicles (UAVs) is flexible, low cost, and has higher spatial and temporal resolution than does satellite data. It has been successfully applied to a variety of research questions, including habitat classification. To popularize the application ofUAVs in mangrove remote sensing, and summarize the data acquisition problems faced in this approach,辻 is necessary to compare and analyze the classification results of mangrove data from multi-type UAV surveys. In this study, fixed-wing UAVs, consumer rotorcraft UAVs, and professional rotorcraft UAVs are used to acquire images of Qi'ao Island Mangrove Reserve in Zhuhai, Guangdong Province. Using the object-oriented classification method, K-nearest neighbor, and random forest classifier, we classified mangrove species in the study area and compared the results from different UAVs. The classification accuracy of fixed-wing UAVs, consumer rotorcraft UAVs, and professional rotorcraft UAVs using the K-nearest neighbor method was 73.8%, 72.8%, and 79.7%, respectively, and that of the random forest method was 81.1%, 84.8%, and 89.3%, respectively. All three UAV types provided data that was suitable for mangrove classification. Random forest classification results were better than those of K-nearest neighbor classification;so, for UAV mangrove remote sensing data, priority should be given to the random forest method. Data acquisition efficiency was estimated by calculating the ratio of imaging area to acquisition time. Fixed-wing UAV, consumer rotorcraft UAV, and professional rotorcraft UAV collected data at 0.036, 0.013, and 0.003 km2/mins respectively. The fixed- wing UAV collected data much more rapidly than did the other UAVs, making it suitable for large-scale mangrove data acquisition. The professional rotorcraft UAV had
作者 刘凯 龚辉 曹晶晶 朱远辉 Liu Kai;Gong Hui;Cao Jingjing;Zhu Yuanhui(School of Geography and Planning, Sun Yat-sen University//Provincial Engineering Research Center for Public Security and Disaster// Guangdong Key Laboratory for Urbanization and Geo Simulation, Guangzhou 510275, China;Center of Geo Informatics for Public Security, College of Geographical Science, Guangzhou University, Guangzhou 510006, China)
出处 《热带地理》 CSCD 北大核心 2019年第4期492-501,共10页 Tropical Geography
基金 广东省自然科学基金项目(2016A030313261、2016A030313188) 海洋公益性行业科研专项经费项目(201505012)
关键词 无人机 遥感 红树林 随机森林分类 K-最近邻法 面向对象分类 UAV remote sensing mangrove random forest classification AT-nearest neighbor method objectoriented classification
  • 相关文献

参考文献14

二级参考文献214

共引文献487

同被引文献287

引证文献22

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部