摘要
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals.Critical roles of GPCRs have been established in bone development,remodeling,and disease.Multiple human GPCR mutations impair bone development or metabolism,resulting in osteopathologies.Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals.To date,92 receptors (5 glutamate family,67 rhodopsin family,5 adhesion,4 frizzled/taste2 family,5 secretin family,and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals).By analyzing data from these 92 GPCRs,we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions,and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models.Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD:9 genes each for human height and osteoporosis;4 genes each for human osteoarthritis (OA) and fracture risk;and 2 genes each for adolescent idiopathic scoliosis (AIS),periodontitis,osteosarcoma growth,and tooth development.Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass,while deficiency of 22 GPCRs increased bone mass and BMD;deficiency of 8 GPCRs reduced body length,while 5 mice had reduced femur size upon GPCR deletion.Furthermore,deficiency in 6 GPCRs induced osteoporosis;4 induced osteoarthritis;3 delayed fracture healing;3 reduced arthritis severity;and reduced bone strength,increased bone strength,and increased cortical thickness were each observed in 2 GPCR-deficiency models.The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis,population studies,and investigation of phenotype correlat
The superfamily of G protein-coupled receptors(GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals.Critical roles of GPCRs have been established in bone development,remodeling,and disease.Multiple human GPCR mutations impair bone development or metabolism,resulting in osteopathologies.Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals.To date,92 receptors(5 glutamate family,67 rhodopsin family,5 adhesion,4 frizzled/taste2 family,5 secretin family,and 6 other 7 TM receptors) have been associated with bone diseases and dysfunctions(36 in humans and 72 in animals).By analyzing data from these 92 GPCRs,we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions,and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models.Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD:9 genes each for human height and osteoporosis;4 genes each for human osteoarthritis(OA) and fracture risk;and 2 genes each for adolescent idiopathic scoliosis(AIS),periodontitis,osteosarcoma growth,and tooth development.Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass,while deficiency of 22 GPCRs increased bone mass and BMD;deficiency of 8 GPCRs reduced body length,while 5 mice had reduced femur size upon GPCR deletion.Furthermore,deficiency in 6 GPCRs induced osteoporosis;4 induced osteoarthritis;3 delayed fracture healing;3 reduced arthritis severity;and reduced bone strength,increased bone strength,and increased cortical thickness were each observed in 2 GPCR-deficiency models.The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis,population studies,and investigation of phenotype correlation
基金
supported by grants from the National Key Research and Development Program of China(2018YFC1105102 to J.L.,2016YFC0902102 to J.L.and J.X.)
the National Natural Science Foundation of China(81722020,91749204,81472048 to J.L.,81330049 to M.L.,81330059 and 81572640 to J.X.)
the Innovation Program of Shanghai Municipal Education Commission(14ZZ051 to J.L.,2017ZZ01017 to J.X.)
the Science and Technology Commission of Shanghai Municipality(12ZR1447900 to J.L.,17JC1400903 and 17411950300 to J.X.)
the Fundamental Research Funds for the Central Universities(to J.L.)