期刊文献+

Preheating Combustion Characteristics of Ultra-Low Volatile Carbon-Based Fuel 被引量:7

Preheating Combustion Characteristics of Ultra-Low Volatile Carbon-Based Fuel
原文传递
导出
摘要 Pulverized coal combustion technology with preheating solid fuel in a circulating fluidized bed was used for the combustion test of ultra-low volatile carbon-based fuel.This paper first validated the feasibility and advantages of applying the combustion technology to this kind of fuel.The carbon-based fuel could achieve a stable preheating process in this test system.After the preheating,the apparent sensible heat of the fuel was significantly increased.This provided a necessary condition for the stable ignition and efficient combustion of the carbon-based fuel in the post-combustion chamber.The relative proportions of CO,H2,and CH4 in preheated coal gas were very low,and the effect of high-temperature coal gas at the entrance of the post-combustion chamber was greatly impaired,indicating that the combustion process in post-combustion chamber was mainly the combustion of preheated char.At the same time,the strong reducing atmosphere in the circulating fluidized bed also facilitated the reduction of fuel-nitrogen into N2,which resulted in low NOx emissions.On this basis,with the combination of preheating combustion technology and air-staging combustion technology,the NOx emissions had drastically decreased when the burnout air distribution position moved down or varied from a single-layer distribution to a multi-layer distribution system.The lowest original NOx emissions were 90.6 mg/m3(at 6%O2),and the combustion efficiency exceeded 97%,which ultimately achieved efficient and clean combustion of ultra-low volatile carbon-based fuel. Pulverized coal combustion technology with preheating solid fuel in a circulating fluidized bed was used for the combustion test of ultra-low volatile carbon-based fuel. This paper first validated the feasibility and advantages of applying the combustion technology to this kind of fuel. The carbon-based fuel could achieve a stable preheating process in this test system. After the preheating, the apparent sensible heat of the fuel was significantly increased. This provided a necessary condition for the stable ignition and efficient combustion of the carbon-based fuel in the post-combustion chamber. The relative proportions of CO, H2, and CH4 in preheated coal gas were very low, and the effect of high-temperature coal gas at the entrance of the post-combustion chamber was greatly impaired, indicating that the combustion process in post-combustion chamber was mainly the combustion of preheated char. At the same time, the strong reducing atmosphere in the circulating fluidized bed also facilitated the reduction of fuel-nitrogen into N2, which resulted in low NOx emissions. On this basis, with the combination of preheating combustion technology and air-staging combustion technology, the NOx emissions had drastically decreased when the burnout air distribution position moved down or varied from a single-layer distribution to a multi-layer distribution system. The lowest original NOx emissions were 90.6 mg/m3(at 6% O2), and the combustion efficiency exceeded 97%, which ultimately achieved efficient and clean combustion of ultra-low volatile carbon-based fuel.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第4期772-779,共8页 热科学学报(英文版)
基金 the support of the National Key Research and Development Program of China(2017YFB0602005)
关键词 PREHEATING combustion circulating fluidized bed ultra-low volatile carbon-based FUEL air-staging Nox emissions preheating combustion circulating fluidized bed ultra-low volatile carbon-based fuel air-staging NO_x emissions
  • 相关文献

参考文献2

二级参考文献6

共引文献23

同被引文献67

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部