摘要
恐怖袭击不但会造成大量人员伤亡和财产损失,还会造成群众恐慌,对社会稳定有很大影响。旨在从数据分析角度,依据相关数据对恐怖袭击中蕴藏的信息加以分析,为防恐反恐提供有用信息。针对基于危害的恐怖袭击事件分级,根据GTD上1998-2017年数据信息进行数据提取,考虑到很多变量大面积缺失数据,首先对这些变量的重要性作简易评估并进行删减,然后对数据进行清洗和补充,最后根据特征提取和降维后的数据,分出事件对应的恐怖袭击级别。结果表明,深度学习中的深度置信网络(DBN)可以用于提取和减少预处理数据,且DBN可自动实现上述功能,无需太多人为干预。
The occurrence of terrorist attacks will not only lead to a large number of casualties and losses of property,but also cause public panic,which has a great impact on social stability and hinder people's normal work and life order.This paper aims to analyze the information contained in terrorist attacks from the perspective of data analysis according to relevant data,so as to provide useful information for counter-terrorism and counter-terrorism prevention.In view of the classification based on the harm of terrorist attacks,we first extract the data from 1998-2017 according to the GDT (Global Terrorism Databas),considering there are many variables the missing data of large area,so we first make a simple assessment of the importance of these variables,subtract them,and then clean and supplement the data.Finally,we distinguish the level of terror attack corresponding to part of the incident according to the feature extraction and dimensionality reduction data.The deep belief networks (DBN) in deep learning can be used to extract and reduce preprocessing data.DBN can do this automatically without much human intervention.
作者
赵芸
赵敏
ZHAO Yun;ZHAO Min(School of Photoelectric Information and Computer Engineering, University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《软件导刊》
2019年第7期173-176,共4页
Software Guide
关键词
数据处理
恐怖袭击
深度置信网络(DBN)
特征提取
降维
data processing
terrorist attacks
deep belief networks (DBN)
feature extraction
dimensionality reduction