期刊文献+

基于Mask R-CNN的猪只爬跨行为识别 被引量:34

Mounting Behavior Recognition for Pigs Based on Mask R-CNN
下载PDF
导出
摘要 针对目前猪只爬跨行为自动化检测程度较低的问题,提出了一种基于MaskR-CNN的猪只爬跨行为识别算法。首先获取猪只俯视图像,利用Labelme制作数据集标签,引入迁移学习方法训练ResNet-FPN网络,获取猪只分割结果,并提取每个样本中的mask像素面积。提取每个样本中的最小mask像素面积作为爬跨行为识别的经验样本集,确定爬跨行为界定阈值。利用测试集分别测试猪只分割网络模型及爬跨行为识别算法,结果表明,猪只分割网络模型的分割准确率为94%,爬跨行为识别算法准确率为94.5%。本算法能够自动有效地检测猪只爬跨行为,可为牲畜养殖自动化提供支持。 The mounting behavior of pigs is generally manifested as a pig puts two front legs on the body or head of another pig which stays lying or dodged quickly.Mounting between pigs often causes epidermal wounds and even fractures,which reduces animal welfare and affects the economic benefits.Therefore,it is necessary to isolate the mounting pigs in time.In view of the low degree of automation of current mounting behavior detection of pigs,an algorithm based on Mask R-CNN was proposed to recognize the mounting behavior of pigs.Firstly,the top view videos of pigs were shot,and the dataset labels were made by Labelme.The transfer learning was applied to train the ResNet-FPN network to obtain the pig segmentation result and extract the mask pixel area in each sample.The value of the minimum mask pixel area in each sample was extracted in order to build an empirical sample set for mounting behavior recognition,and the discriminant threshold of the mounting behavior of pigs was determined.In the experiment,the test dataset was used to evaluate the pig segmentation network model and the mounting behavior recognition algorithm.The segmentation accuracy of the network was 94%,and the accuracy of the mounting behavior recognition algorithm was 94.5%.The experimental results showed that the algorithm can effectively detect the mounting behavior of pigs and provide support for livestock breeding automation.
作者 李丹 张凯锋 李行健 陈一飞 李振波 蒲东 LI Dan;ZHANG Kaifeng;LI Xingjian;CHEN Yifei;LI Zhenbo;PU Dong(College of Information and Electronics Engineering,China Agricultural University,Beijing 100083,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2019年第B07期261-266,275,共7页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重大科技基础设施项目(4444-10099609)
关键词 猪只 爬跨行为 迁移学习 MaskR-CNN 界定阈值 pigs mounting behavior transfer learning Mask R-CNN threshold classification
  • 相关文献

参考文献5

二级参考文献18

  • 1Van Asseldonk M A P M,Huirne R B M,Dijduizen A A,et al.Information needs and information technology on dairy farms[J].Comput Electron Agric,1999,22(2/3):97-107. 被引量:1
  • 2Schwarting R K,Goldenberg R,Steiner H,et al.Video image analyzing system for open-field behavior in the mt focusing on behavioral asymmetries[J].J Neurosci Methods,1993,49(3):199-210. 被引量:1
  • 3Hoy J B,Koehler P G,Patterson R S.A microcomputerbased system for real-time analysis of animal movement[J].J Neurosci Methods,1996,64(2):157-61. 被引量:1
  • 4Spink A J,Tegelenbosch R A J,Buma M O S,et al.The etho vision video tracking system:A tool for behavioral phenotyping of transgenic mice[J].Physiol Behav,2001,73(5):731-744. 被引量:1
  • 5Clarke R L,Smith R F,Justesen D R.An infrared device for detecting locomotor activity[J].Behav Res Methods Instrum Comput,1985,17:519-525. 被引量:1
  • 6Robles E.A method to analyze the spatial distribution of behavior[J].Behav Res Methods Instrum Comput,1990,22:540-549. 被引量:1
  • 7Minematsu S,Hiruta M,Taki M,et al.Automatic monitoring system for the measurement of body weight,food and water consumption and spontaneous activity of a mouse[J].J Toxicol Sci,1991,16(2):61-73. 被引量:1
  • 8Young M S,Li Y C,Lin M T.A modularized infrared light matrix system with high resolution for measuring animal behaviors[J].Physiol Behav,1993,53(3):545-551. 被引量:1
  • 9Telezhenko E.Measurements of trackways as a method for assessing locomotion in dairy cows[C]//Lic,thesis.Dept.of Animal Environment and Health,SLU.Avhandling,2005:2.32. 被引量:1
  • 10Song X,Leroy T,Vranken E,et al.Automatic detection of lameness in dairy cattle:Vision-based trackway analysis in cow's locomotion[J].Comput Electron Agric,2008,64(1):39-44. 被引量:1

共引文献116

同被引文献360

引证文献34

二级引证文献353

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部