摘要
为提升斜拉索被动黏滞阻尼器的减振效果,开展了阻尼器并联的惯性质量单元对斜拉索减振的增效作用试验研究.首先基于滚珠丝杠位移增效机制、两节点惯质单元"inerter"与电磁阻尼技术集成了惯性质量和阻尼系数均具有可调性的惯性质量电磁阻尼器(EIMD)样机,综合理论分析与力学性能测试建立了EIMD的力学模型;然后建立模型斜拉索-EIMD减振试验平台,通过改变EIMD的惯性飞轮转动惯量和负载电阻阻值,分别测试分析了惯性质量和阻尼参数对斜拉索面内振动前2阶模态附加阻尼比的影响规律;最后对比研究了惯性质量频率相关型负刚度与恒定型负刚度对斜拉索阻尼器的减振增效作用与机理.结果表明:随着阻尼器惯性质量的增加,斜拉索前2阶附加模态阻尼比均先增加后下降,且第2阶模态最优惯性质量小于第1阶模态;斜拉索第1,2阶模态附加阻尼比最大试验值分别达到了线性黏滞阻尼器理论最优值的2.02,4.46倍;当惯性质量无量纲负刚度系数逼近"-1"时,斜拉索减振效果提升效应最为显著;惯性质量频率相关型负刚度与恒定型负刚度均通过负刚度特性放大阻尼器的位移实现耗能增效,但惯性质量负刚度不会诱发斜拉索减振系统稳定性问题.
To improve the performance of vibration suppression of a stay cable with a viscous damper,an inertial mass element is introduced in parallel with the damper into the system and its effects are investigated through experiments.First,an electromagnetic inertial mass damper(EIMD)prototype with an adjustable inertial mass and an adjustable damping coefficient was designed and fabricated based on the displacement amplification mechanism of ball screw,the two-node inertial mass element‘inerter’,and the electromagnetic damping technology.The mechanical model of the EIMD was then established through theoretical analysis and mechanical performance tests.Second,a test rig for cable-EIMD system was established and parametric analysis was conducted to investigate the effects of inertial mass and damping parameters on the first two order supplemental modal damping ratios of the cable by changing the moment inertia of the flywheel and the load resistance of the EIMD,respectively.Finally,performance improvement and its mechanisms between the inertia mass induced negative stiffness and the constant negative stiffness were compared.The results show that the supplemental modal damping ratios of the first two order modes both increase first and then decrease with the increase of inertial mass,and moreover,the corresponding optimum inertial mass in the second mode is lower than that in the first mode.The attainable maximum first and second supplemental modal damping ratios of the cable with an EIMD can reach 2.02 and 4.46 times of those with only a viscous damper,respectively.When the dimensionless negative stiffness is close to"-1",the EIMD can achieve the best performance.The improved control performance of the cable with inertial mass induced negative stiffness or constant negative stiffness both attribute to the displacement amplification effect and so to the corresponding energy dissipation effects.However,instability problem can be avoided in the case of inertia mass induced negative stiffness.
作者
汪志昊
郜辉
许艳伟
陈政清
WANG Zhi-hao;GAO Hui;XU Yan-wei;CHEN Zheng-qing(International Joint Research Lab for Eco-building Materials and Engineering of Henan Province,North China University of Water Resources and Electric Power,Zhengzhou 450045,China;Key Laboratory for Wind and Bridge Engineering of Hunan Province,Hunan University,Changsha 410082,China)
出处
《振动工程学报》
EI
CSCD
北大核心
2019年第3期377-385,共9页
Journal of Vibration Engineering
基金
国家重点基础研究973计划项目(2015CB057702)
国家自然科学基金资助项目(51878274,51778228)
河南省高等学校青年骨干教师资助计划(2015GGJS-104)
关键词
斜拉索
惯性质量电磁阻尼器
振动控制
负刚度
耗能增效
stay cable
electromagnetic inertial mass damper
vibration control
negative stiffness
energy dissipation improvement