期刊文献+

智能RGV的动态调度策略研究 被引量:1

Research on dynamic scheduling strategy of intelligent RGV
下载PDF
导出
摘要 对智能RGV的动态调度策略进行设计,运用了线性规划、遗传算法及数据包络分析等方法,构建了线性规划模型、多目标FJSP问题模型、DEA效率检验等模型,综合运用了Matlab、Mathematica等软件编程求解,得到了能够解决两种情况:一道工序和两道工序的物料加工作业情况下有效的RGV动态调度模型和求解算法,最后根据三组具体数据,运用DEA模型检验出模型的有效性,并且证明出系统具有较高的作业效率。 The dynamic scheduling strategy of intelligent RGV is designed. Linear programming, genetic algorithm, data envelopment analysis and other methods were used to build the linear programming model, multi-objective FJSP problem model, DEA efficiency test model and other models. Matlab, Mathematica and other software programs were used to solve the problem. The effective RGV dynamic scheduling model and solving algorithm are obtained under the condition of material processing operations with two conditions -- one working procedure and two working procedures. Finally, according to the three groups of specific data, the DEA model was used to verify the effectiveness of the model, and the system was proved to have a high operating efficiency.
作者 周妍敏 李勇 左敏 李忆雯 ZHOU Yan-min;LI Yong;ZUO Min;LI Yi-wen(School of statistics and Applied Mathematics, Anhui Bengbu 233000, China;Institute of Finance, Anhui University Finance and Economics, Anhui Bengbu 233030, China)
出处 《齐齐哈尔大学学报(自然科学版)》 2019年第5期72-77,共6页 Journal of Qiqihar University(Natural Science Edition)
基金 国家自然科学基金(11601001)
关键词 智能RGV 动态调度 多目标FJSP模型 遗传算法 DEA MATLAB intelligent RGV dynamic scheduling multi-target FJSP model genetic algorithm DEA Matlab
  • 相关文献

参考文献5

二级参考文献31

  • 1盛立纲,顾幸生.混合遗传NEH算法在流水车间调度中的应用[J].控制工程,2010,17(4):497-500. 被引量:5
  • 2张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:109
  • 3潘全科,朱剑英.作业车间动态调度研究[J].南京航空航天大学学报,2005,37(2):262-268. 被引量:29
  • 4Jackson J R. Simulation Research on Job Shop Production[J].Naval Res. Log. Quart., 1957,4(3): 287-295. 被引量:1
  • 5Nelson R T, Holloway C A, Wong R M. Centralized Scheduling and Priority Implementation Heuristics for a Dynamic Job Shop Model with due Dates and Variable Processing Time[J]. AIIE Transactions, 1977,19 : 96-102. 被引量:1
  • 6Coello C A C. Evolutionary Multi--objective Optimization:a Historical View of the Field[J]. Computational Intelligence Magazine, 2006,1 (1) : 28-36. 被引量:1
  • 7Deb K,Pratap A,Agarwal S,et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA- II[J]. IEEE Trans. on Evolutionary Computation, 2002,6(2) : 182-197. 被引量:1
  • 8Abumaizar R J, Svestka J A. Rescheduling Job Shops under Random Disruptions[J]. Int. J. Prod. Res. ,1997,35:2065-2082. 被引量:1
  • 9Raheja A S, Subramaniam V. Reactive Recovery of Job Shop Schedules-a Review[J]. Int. J. Adv. Manuf. Technol. ,2002,19:756-763. 被引量:1
  • 10Wong T N, Leung C W, Mak K L, et al. Integrated Process Planning and Scheduling/Rescheduling--an Agent--based Approach[J]. International Journal of Production Research,2006,44(18/19) :3627-3655. 被引量:1

共引文献72

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部