期刊文献+

基于群体智能算法的排球高鲁棒性目标识别研究(英文)

Research on high robustness target identification of volleyball based on swarm intelligence algorithm
下载PDF
导出
摘要 基于小波变换和人工神经网络的目标识别是图像处理的一个重要研究方向。但是,此类方法采用的梯度下降规则容易产生局部极小值。为了解决该问题,提出了一种基于群体智能算法的高鲁棒性目标识别算法,可有效应用于各种图像识别任务,如排球目标识别等。首先对图像进行预处理并变换成HSV空间进行背景分割,并通过小波不变矩对图像进行特征提取。然后采用新兴的群智能算法-狼群算法,对基于小波神经网络的目标图像识别进行优化,以便提升全局收敛性和鲁棒性。仿真实验结果显示:相比原有的方法,提出优化方法具有更高的识别精度和稳定性。 Target recognition based on wavelet transform and artificial neural network is an important research direction of image processing. However,gradient descent rules used by such methods tend to produce local minima.In order to solve this problem,a highly robust target recognition algorithm based on swarm intelligence algorithm was proposed,which can be effectively applied to various image recognition tasks such as volleyball target recognition. Firstly,the image was preprocessed and transformed into HSV space for background segmentation,and the features were extracted by wavelet moment invariants. Then using the new swarm intelligence algorithm-wolf pack algorithm,the target image recognition based on wavelet neural network was optimized to improve global convergence and robustness. Simulation results show that compared with the original method,the proposed optimization method has higher recognition accuracy and better stability.
作者 边永红 Yong-hong BIAN(Inner Mongolia University for Nationalities, Tongliao 028000, China)
机构地区 内蒙古民族大学
出处 《机床与液压》 北大核心 2019年第12期71-77,共7页 Machine Tool & Hydraulics
基金 Foundation item:National Social Science Foundation Project(13BTY05)~~
关键词 图像处理 模式识别 目标识别 小波神经网络 群智能算法 鲁棒性 Image processing Pattern recognition Target recognition Wavelet neural network Swarm intelligence algorithm Robustness
  • 相关文献

参考文献4

二级参考文献52

  • 1陈丹,李京华,黄根全,许俊峰.基于主分量分析的声信号特征提取及识别研究[J].声学技术,2005,24(1):39-41. 被引量:12
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3张亚军,张效民.优化的线谱特征在水下目标识别中的应用[J].计算机仿真,2006,23(12):1-3. 被引量:8
  • 4Bartlett M S,Movellan J R and Sejnowski T J.2002.Face recognition by independent component analysis.IEEE Transactions on Neural Networks,13(6):1450–1464. 被引量:1
  • 5Huan R H and Yang R L.2008.SAR target recognition based on MRF and Gabor wavelet feature extraction.IEEE International Geo-science and Remote Sensing Symposium(IGARSS),Boston,Vol.2:Ⅱ-907–Ⅱ-910. 被引量:1
  • 6Hyvarinen A.1999.Fast and robust fixed-point algorithms for inde-pendent component analysis.IEEE Transactions on Neural Net-works,10(3):626–634. 被引量:1
  • 7Lee T S.1996.Image representation using2D Gabor wavelet.IEEE Transactions on PAMI,18(10):959–971. 被引量:1
  • 8Li M K,Guan J,Duan H and Gao X.2006.SAR ATR based on support vector machines and independent component analysis.Interna-tional Conference on Radar,Shanghai:1–3. 被引量:1
  • 9Lu X G,Han P and Wu R B.2007.Two-dimensional PCA for SAR automatic target recognition.1st Asian and Pacific Conference on Synthetic Aperture Radar,Huangshan,China:513–516. 被引量:1
  • 10Manjunath B S and Ma W Y.1996.Texture features for browsing and retrieval of image data.IEEE Transactions on Pattern Analysis and Machine Intelligence,18(8):837–842. 被引量:1

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部