期刊文献+

X_ρ空间上随机时滞格系统的随机动力学 被引量:1

Random Dynamics for Stochastic Delay Lattice Systems in X_ρ Space
下载PDF
导出
摘要 本文研究一类加性白噪声驱动的具有时滞的随机格动力系统的动力学。引入Xρ空间,运用Hilbert空间中的基本等式和Young、Gronwall、Schwarz不等式,证明了随机时滞格点方程解的存在性、唯一性和对初值的连续依赖性,从而得到其解生成连续的无穷维随机动力系统。 The dynamics of a class of stochastic lattice dynamical systems with time delay driven by additive white noise is studied.Xρspace is introduced,basic equalities,Young inequality,Gronwall inequality and Schwarz inequality are applied.The existence,uniqueness and continuous dependence on the initial data of solutions to the stochastic delay lattice equations with additive noise are presented.Then a continuous infinite dimensional random dynamical system generated by the solutions is obtained.
作者 张一进 ZHANG Yijin(Chongqing Key Lab of Intelligent Analysis and Decision on Complex Systems,Chongqing University of Postsand Telecommunications,Chongqing 400065,China;Key Laboratory of Industrial Internetof Things and Networked Control,Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2019年第3期106-110,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11701060)
关键词 随机动力系统 时滞方程 格系统 连续依赖性 动力学 random dynamical system delay equation lattice systems continuous dependence dynamics
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部