期刊文献+

Stabilization of the Cascaded ODE-Schrödinger Equations Subject to Observation With Time Delay

下载PDF
导出
摘要 This paper focuses on the stabilization of the cascaded Schrodinger-ODE equations subject to the observation with time delay.Both observer and predictor systems are designed to estimate the state variable on the time interval[0,t-τ]when the observation is available,and to predict the state variable on the time interval[t-τ,t]when the observation is not available,respectively.Based on the estimated state variable and the output feedback stabilizing controller using the backstepping method,it is shown that the closed-loop system is exponentially stable. This paper focuses on the stabilization of the cascaded Schr?dinger-ODE equations subject to the observation with time delay. Both observer and predictor systems are designed to estimate the state variable on the time interval[0, t-τ]when the observation is available, and to predict the state variable on the time interval[t-τ, t]when the observation is not available, respectively. Based on the estimated state variable and the output feedback stabilizing controller using the backstepping method, it is shown that the closed-loop system is exponentially stable.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期1027-1035,共9页 自动化学报(英文版)
基金 supported by the National Natural Science Foundation of China(61673061)
  • 相关文献

参考文献1

二级参考文献18

  • 1Fridman E and Orlov Y, Exponential stability of linear distributed parameter systems with time- varying delays, Automatica, 2009, 45: 194-201. 被引量:1
  • 2Datko R, Lagnese J, and Polis P M, An example on the effect of time delays in boundary feedback stabilization of wave equation, SIAM Journal on Control Optimization, 1986, 24:152- 156. 被引量:1
  • 3Datko R, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimization, 1988, 26: 697-713. 被引量:1
  • 4Fleming W, Future Directions in Control Theory, SIAM, Philadelphia, 1988. 被引量:1
  • 5Logemann H, Rebarber R, and Weiss G, Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop, SIAM Journal on Control and Optimization, 1996, 34:572 -600. 被引量:1
  • 6Guo B Z, Xu C Z, and Hammouri H, Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation, ESAIM: Control, Optimization and Calculus of Variations, 2012, 18: 22-35. 被引量:1
  • 7Guo B Z and Yang K Y, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation, Automatica, 2009, 45:1468- 1475. 被引量:1
  • 8Yang K Y, Li J J, and Zhang J, Stabilization of Euler-Bernoulli beam equations with variable coefficients under delayed boundary output feedback, Electronic Journal of Differential Equations, 2015, 75:1- 14. 被引量:1
  • 9Guo B Z and Yang K Y, Output feedback stabilization of a one-dimensional SchrSdinger equation by boundary observation with time delay, IEEE Transactions on Automatic Control, 2010, 55: 1226-1232. 被引量:1
  • 10Yang K Y and Yao C Z, Stabilization of one-dimensional SchrSdinger equation with variable coefficient under delayed boundary output feedback, Asian Journal of Control, 2013, 15:1531- 1537. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部