摘要
时域有限差分(finite-difference time-domain,FDTD)方法是一种应用广泛的时域电磁计算方法,但由于需满足Courant-Friedrich-Levy时间稳定性条件,因此该方法的时间步长由模拟空间的最小网格尺寸所决定,导致在模拟具有精细结构的电磁问题时,计算效率非常低。为了克服该缺点,研究者们提出了混合显隐式时域有限差分(hybrid implicit-explicit finite- difference time-domain, HIE-FDTD)方法。HIE-FDTD方法在沿精细结构所在方向上采用混合显隐式差分,可以避免精细网格对时间步长的限制,在模拟沿一个方向具有精细结构的电磁问题时,与FDTD方法相比,具有更高的计算效率。分析了HIE-FDTD方法的基本公式、时间稳定性条件和色散误差,阐述了HIE-FDTD方法的连接边界、吸收边界和周期边界等边界条件,介绍了HIE-FDTD方法的应用和发展状况。
The finite-difference time-domain (FDTD) method is one of the most widely used methods in computational electromagnetic field. But this method takes a long time to simulate the electromagnetic problems with fine structure. To improve the computational efficiency of the FDTD method, researchers proposed a hybrid implicit-explicit finite-difference time-domain (HIE-FDTD) method which uses the hybrid implicit-explicit difference in the direction of target with fine structure to avoid the confinement of the fine spatial mesh on the time step size. Compared with the FDTD method, the efficiency of the HIE-FDTD method in simulating electromagnetic target with fine structure along one direction is significantly improved. In this paper, the basic formulas, time stability conditions and dispersion errors of the HIE-FDTD method are analyzed. The boundary conditions such as connection boundary, absorption boundary, and periodic boundary of the HIE-FDTD method are described, and some applications and developments of this method are introduced.
作者
陈娟
马寒啸
施宏宇
CHEN Juan;MA Han-xiao;SHI Hong-yu(School of Information and Communication Engineering, Xi’an Jiaotong University, Xi’an 710049, China;Shenzhen Research School, Xi’an Jiaotong University, Shenzhen 518057, China;Guangdong Xi’an Jiaotong University Academy, Shunde 528300, China)
出处
《现代应用物理》
2019年第2期1-6,共6页
Modern Applied Physics
基金
深圳市科技计划资助项目(JCYJ20170816100722642
JCYJ20180508152233431)
广东省自然科学基金资助项目(2018A030313429)
关键词
计算电磁学
时域有限差分方法
混合显隐式差分
computational electromagnetics
finite-difference time-domain method
hybrid implicit-explicit difference