摘要
Performing repeatable duties automatically was the dreams of human being for centuries. Although full autonomy has long been dreamed of by visionaries, many researches have been performed for surface vehicles automation since the last century to get close to this dream stepwise. To increase daily working hours and accuracy and reduce cost, operations such as hydrography are susceptible for autonomy. Beside platform topology, installed sensors and energy resources, the core elements of any autonomous surface vehicle are navigation, guidance and control systems. To perform bathymetry operation in autonomy manner, a reliable and robust navigation algorithm is designed and embedded in an autonomous surface vehicle titled Morvarid. Morvarid is a plug-in hybrid solar powered catamaran boat. The developed algorithm is a combination of extended Kalman filter, search ball and potential field approaches. Many experimental field tests are carried out after simulation in Simulink environment. Test results illustrated the algorithm and improved the path followed by reducing SD and RMSE and there is a good correlation between simulation run and experimental tests.
Performing repeatable duties automatically was the dreams of human being for centuries. Although full autonomy has long been dreamed of by visionaries, many researches have been performed for surface vehicles automation since the last century to get close to this dream stepwise. To increase daily working hours and accuracy and reduce cost,operations such as hydrography are susceptible for autonomy. Beside platform topology, installed sensors and energy resources, the core elements of any autonomous surface vehicle are navigation, guidance and control systems. To perform bathymetry operation in autonomy manner, a reliable and robust navigation algorithm is designed and embedded in an autonomous surface vehicle titled Morvarid. Morvarid is a plug-in hybrid solar powered catamaran boat. The developed algorithm is a combination of extended Kalman filter, search ball and potential field approaches.Many experimental field tests are carried out after simulation in Simulink environment. Test results illustrated the algorithm and improved the path followed by reducing SD and RMSE and there is a good correlation between simulation run and experimental tests.
基金
financially supported by the Ports and Maritime Organization for funding the Morvarid Project(Grant No.20S/7509.2015)