摘要
高加速极限试验可快速暴露MEMS陀螺的缺陷和薄弱环节,针对复合环境应力试验的陀螺失效品,开展了详细的失效定位和机理分析,推导了引线的振动响应特性和固有模态,并提出了引线的抗振设计方法。仿真和实验结果表明,引线固有频率的理论推导模型比较精确,通过缩短引线长度可有效提高引线的固有频率和降低振动应力,从而增强其抗振能力。优化设计后陀螺可耐受频率为0~10 kHz、总均方根为30 gn的加速度随机振动。
The defects and weaknesses of a MEMS gyroscope can be quickly exposed by highly accelerated limit test(HALT). Aiming at the failure gyroscope in the HALT test,this paper carries out detailed failure location and mechanism analysis,deduces the vibration response characteristics and inherent modes of the wire,and proposes the anti-vibration design method. The simulation and experimental results demonstrate that the theoretical deduction model of the natural frequency of the wire is accurate. By shortening the length of the wire,the natural frequency and the vibration stress can be effectively improved,thus enhancing its anti-vibration ability. After optimization,the gyroscope can tolerate the acceleration random vibration with a frequency of 0~10 kHz and a total root mean square of 30 gn.
作者
何春华
赵前程
杨振川
张大成
闫桂珍
HE Cliunhua;ZHAO Qiancheng;YANG Zhenchuan;ZHAND Dacheng;YAN Guizhen(National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics,Peking University,Beijing 100871,China;Midea Group co. Ltd,Foshan Guangdong 528311,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2019年第6期809-814,共6页
Chinese Journal of Sensors and Actuators
关键词
微机械陀螺
振动可靠性
响应特性
抗振设计
MEMS gyroscope
vibration reliability
response characteristics
anti-vibration design