期刊文献+

基于最近邻模糊聚类的T-S模糊辨识方法 被引量:4

T-S Fuzzy Identification Method Based on Nearest Neighbor Fuzzy Clustering
下载PDF
导出
摘要 为提高T-S模糊模型的辨识精度和计算效率,并针对传统聚类算法存在的聚类中心选取问题,提出一种基于最近邻模糊聚类的T-S模糊辨识方法。首先,利用所提的最近邻聚类法降低了传统计算中人为预设聚类初始参数的主观性,并提高了聚类效率,其结果作为模糊c均值算法的初始参数,来实现对模糊规则中前提参数的准确辨识,最后结合稳态卡尔曼滤波算法快速估计规则的后件参数。所提方法的有效性通过典型化工过程pH中和过程的建模得以验证。 In order to improve the identification accuracy of the T-S fuzzy model, and to solve the problem of determining the clustering centers in the traditional clustering algorithms, a Nearest Neighbor Fuzzy Clustering-based(NNFC) T-S fuzzy identification method is proposed. Firstly, the proposed nearest neighbor clustering approach decreases the subjectivity of the artificial presetting for the initial parameters of clustering.And the computation efficiency of clustering is also increased. Furthermore, the result of nearest clustering is afforded for the initial parameters of the Fuzzy c-Means(FCM) algorithm. Thus the premise parameters in the fuzzy rules are identified accurately. Finally, the Stable Kalman Filter(SKF) method is combined with the presented NNFC to estimate the consequent parameters quickly. The effectiveness of proposed method is verified by the classic chemical pH neural process.
作者 王娜 胡超芳 WANG Na;HU Chao-fang(School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387,China;Key Laboratory of Advanced Electrical Engineering and Energy Technology,Tianjin Polytechnic University,Tianjin 300387,China;Key Laboratory of Micro Optical Electronic Mechanical System Technology of the Ministry of Education,TianjinUniversity,Tianjin 300072,China;School of Electrical Automation and Information Engineering,TianjinUniversity,Tianjin 300072,China)
出处 《控制工程》 CSCD 北大核心 2019年第6期1068-1073,共6页 Control Engineering of China
基金 微光机电系统技术教育部重点实验室(天津大学)开放基金资助(MOMST2016-4)
关键词 最近邻 聚类初始化 模糊聚类 T-S模糊辨识 Nearest neighbour clustering initialization fuzzy clustering T-S fuzzy identification
  • 相关文献

参考文献2

二级参考文献30

  • 1MURRY-SMTTH R, JOHANSEN T A. Multiple Model Approaches to Modeling and Control [M]. London:Taylor and Francis, 1997. 被引量:1
  • 2EIKENS B, KAR1M M N. Process identification with multiple neural network models [J]. Int J Control, 1999,72(7/8):576- 590. 被引量:1
  • 3POTIMANN M, UNBEHAUEN H, SEBORG D E. Application of a general multi-model approach for identification of highly nonlinear processed--a case study [J]. Int J Control, 1993, 57(1):97-120. 被引量:1
  • 4KRISHNAPURAM R, CHIN-PIN F. Fitting an unknown number of lines and planes to image data through compatible cluster merging[J]. Pattem Recognition, 1992,25(4):385-400. 被引量:1
  • 5KAYMAK U, BABUSKA R. Compatible cluster merging for fuzzy modelling [ A ]. Proc of IEEE Int Conf on Fuzzy Systems [ C ].Yokohama: IEEE Press, 1995:897 - 904. 被引量:1
  • 6ZHONG W. Studies on soft-sensing & advanced control stategies with applications in petrochemical processes [ D ]. Shanghai: East China University of Science and Technology, 1999. 被引量:1
  • 7GUSTAFSON D, KESSEL W C. Fuzzy clustering with a fuzzy covariance matrix [A]. Proc of IEEE Conference on Decision and Control [C]. San Diego, CA:IEEE Press, 1979:761 - 766. 被引量:1
  • 8TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [ J ]. IEEE Trans on Systems ,Man, and Cybemetics, 1985,15(1): 116-132. 被引量:1
  • 9BABUSKA B. Fury Modeling for Control[ M ]. Boston: Kluwer Academic Publishers, 1998. 被引量:1
  • 10NAKANISHI H, TURKSEN I B, SUGENO M. A review and comparsion of six reasoning method [ J ]. Fuzzy Sets and Systems,1992,57(2) :257 - 294. 被引量:1

共引文献27

同被引文献25

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部