期刊文献+

基于非均匀采样数据的HRRP目标识别方法

HRRP target classification and recognition method based on non-uniformly sampled data
下载PDF
导出
摘要 针对数据采样率不足或数据缺失条件下的雷达目标识别问题,提出一种基于非均匀采样数据的目标特征提取与识别方法.该方法首先根据数据非均匀采样方式构造与之匹配的稀疏采样矩阵,用以表征目标回波;然后利用稀疏重构算法获取目标高分辨率一维距离像,并从重构结果中提取出包含稀疏特征在内的多维目标特征;最后采用支持向量机实现各种目标的分类.仿真结果表明,该方法能够从非均匀采样数据中有效提取目标特征;所提取的稀疏特征能够克服传统特征目标姿态敏感的问题,显著提高目标识别率. In order to solve the problem of target recognition caused by insufficient radar sampling rate or missing data, a method of target feature extraction and classification recognition based on non-uniform sampling data is proposed in this paper. Firstly, based on the non-uniform sampling method, the paper constructs the sparse sampling matrix that matches it to represent the target echo, and then uses the sparse reconstruction algorithm to obtain high resolution range profile (HRRP), and extract multi-dimensional target features including sparse features from the reconstruction results. Finally, support vector machine is used to realize the classification of various targets. The simulation results show that the proposed method can effectively extract target features from non-uniformly sampled data, and the extracted sparse features can overcome the pose sensitivity of traditional feature targets, and significantly improve the target recognition rate.
作者 熊鑫 汤子跃 陈一畅 王万田 XIONG Xin;TANG Ziyue;CHEN Yichang;WANGWantian(Air Force EarlyWarning Academy,Wuhan 430019, China)
机构地区 空军预警学院
出处 《空军预警学院学报》 2019年第3期175-179,185,共6页 Journal of Air Force Early Warning Academy
基金 学院青年科技人才托举项目(TJRC425311G11)
关键词 目标识别 非均匀采样数据 稀疏表征 稀疏特征 高分辨率一维距离像 target recognition non-uniformly sampled data sparse representation sparse features high resolution range profile (HRRP)
  • 相关文献

参考文献6

二级参考文献75

  • 1陈一畅,张群,朱丽莉,顾福飞,李平平.基于压缩感知和矢量量化的SAR数据级联压缩方法[J].现代雷达,2013,35(10):36-40. 被引量:2
  • 2毛京红,许小剑.高分辨力雷达目标识别研究[J].系统工程与电子技术,1994,16(10):11-18. 被引量:5
  • 3陈行勇,刘永祥,黎湘,郭桂蓉.微多普勒分析和参数估计[J].红外与毫米波学报,2006,25(5):360-363. 被引量:33
  • 4庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525. 被引量:127
  • 5Li Hsueh-jyh and Yang Sheng-hui. Using range profiles as feature vector to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 261-268. 被引量:1
  • 6Gudnason J, Cui Jing-jing, and Brookes M. HRR automatic taxget recognition from super-resolution scattering center features[J]. IEEE Transactions on Aerospace and Electronic System, 2009, 45(4): 1512-1524. 被引量:1
  • 7Guo Xian-sheng, Wan Qun, Chan Chun-qi, et al.. Source localization using a sparse representation framework to achieve super-resolution[J]. Multidimensional System Signal Processing, 2010, 21(2): 391-402. 被引量:1
  • 8Sen S and Nehorai A. Sparsity-based multi-target tracking using OFDM radar[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1902-1906. 被引量:1
  • 9Stocia P, Babu P, and Li Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35-47. 被引量:1
  • 10Hosen Mohimani G, Massoud Babaie-Zadeh, and Christian Jutten. A fast approach for overcomplete sparse decomposition based on smoothed lq norm[J]. 1EEE Transactions on Signal Processing, 2009, 57(1): 289-301. 被引量:1

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部