期刊文献+

基于深度卷积神经网络的交通流量预测数学模型设计 被引量:5

Design of traffic flow prediction Mathematical model based on deep convolutional neural network
下载PDF
导出
摘要 精确的交通流量预测是实现未来智能交通的关键技术。神经网络模型在该领域的预测方面具有一定的优势。因此,为了提高预测精度,设计一种基于深度卷积神经网络的交通流量预测数学模型。首先,对交通流量数据的预处理方法进行分析,然后结合特征训练过程和卷积神经网络构建深度神经网络结构,并给出深度神经网络的配置参数。利用美国明尼苏达大学UMD分校的交通流数据集进行仿真实验,结果表明,提出的模型可以对短时交通全局趋势进行预测,并具有较好的稳定性和预测精度。 Accurate traffic flow prediction is a key technology for realizing intelligent transportation in the future. Neural network models have certain advantages in the prediction of this field. Therefore,in order to improve the prediction accuracy,a traffic flow prediction mathematical model based on deep convolutional neural network is designed. The preprocessing method of traffic flow data is analyzed. The deep neural network structure is constructed by combining feature training process and convolutional neural network. The configuration parameters of deep neural network are given in this paper. The simulation experiments were carried out with the traffic flow dataset of the UMD Branch,University of Minnesota. The results show that the proposed model can predict the short-term global traffic trend,and has good stability and prediction accuracy.
作者 刘红敏 LIU Hongmin(Guangzhou University Sontan College,Guangzhou 511370,China)
出处 《现代电子技术》 北大核心 2019年第13期110-112,共3页 Modern Electronics Technique
关键词 交通流量预测 智能交通 数学模型 深度神经网络 预测精度 仿真实验 traffic flow prediction intelligent transportation prediction methematical model deep neural network prediction accuracy simulation experiment
  • 相关文献

参考文献5

二级参考文献38

共引文献173

同被引文献46

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部