期刊文献+

单参多极值点复解析多项式映射迭代函数系 被引量:1

IFSs from Family of Complex Analytic Polynomial with Single Parameter and Multi-extreme-points
下载PDF
导出
摘要 本文研究具有多极值点的单参复解析映射族f(z)=z^n+cz构造非线性迭代函数系及其分形.首先分析复解析映射族f(z)=z^n+cz在动力平面上的数学特性、M集及充满Julia集的几何特点;进而研究该复映射族在其M集的2个1周期参数区域上选取参数构造的迭代映射在动力平面上的动力学特性;在参数模值大于1的1周期参数区域中挑选N(N≥2)个参数,构造动力平面上的迭代映射(f(z)=z^n+ciz,i=1,2,…,N);在N个迭代映射的公共吸引域内构造非线性迭代函数系;根据该复映射族在动力平面上有n-1个对称分布的1周期吸引不动点的数学特性,提出了将迭代点z随机旋转(2πj/(n-1),j={0,1,…,n-2})角度后再随机挑选迭代函数系中迭代映射的双随机迭代算法.结果表明:关于复映射族(f(z)=z^n+cz,n=3,4,5,…),在M集的参数|c|>1的1周期参数区域挑选N个参数可以构造出有效的非线性迭代函数系;采用本文提出的双随机迭代算法可以在动力平面上大量生成n-1旋转对称分形. Non-linear IFSs and their fractals are constructed by the family of the complex analytic polynomial with single parameter and multi-extreme-points f( z)= z^n + cz in this paper. First,the mathematic characteristics,the M sets and the filled-in Julia sets of the mapping f( z)= z^n + cz are investigated. Then,the dynamic characteristics of the iterating mappings constructed with the parameters,chosen from 2 1-cycle parameter regions in a M set,are investigated for the family of f( z)= z^n + cz. Next,N( N≥2) parameters in the1-cycle parameter region,where the module value of the parameters are greater than 1,are chosen to construct the iterating mappings( f( z)= z^n + ci z,i = 1,2,…,N) in the danymic plane. The non-linear iterateing function system is builted in the common attracting basin of N iterating mappings. Last,according to the fact that there are n-1 attracting fixed-points symmetrically distributed in the plane for a mapping,the double random iterating method,by which the iterating point z is randomly rotated the degree of( 2πj/( n-1),{ j= 0,1,2,…,n-2}) and then is iterated by randomly choosing an iterating mapping in IFS,is presented. The result shows that about the complex mapping family( f( z)= z^n + cz,n = 3,4,5,…),selection of N parameters in the 1-cycle parameter region of M set,where | c |> 1,can construct a valid non-linear IFS;a great number of the fractals with the n-1 rotation symmetry can be generated by the double random iterating method presented in this paper.
作者 陈宁 关博文 海智刚 CHEN Ning;GUAN Bo-wen;HAI Zhi-gang(Faculty of Information & Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第6期1354-1360,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61272253)资助
关键词 迭代函数系 分形 复映射 M集 充满JULIA集 多极值点 IFS fractal complex mapping M set filled-in Julia set multi-extreme-points
  • 相关文献

参考文献3

二级参考文献15

  • 1Peitgen H O, Richter P H. The beauty of fractals[M]. Heidelberg:Springer, 1986. 被引量:1
  • 2Field M, Golubitsky M. Symmetry in chaos[M]. New York:Oxford University Press, 1992. 被引量:1
  • 3Barnsley M F. Fractals everywhere[M]. 2nd ed. Boston: AcademicPress, 1993. 被引量:1
  • 4Lau K S, Ngai S M, Rao H. Iterated function systems withoverlaps and self-similar measures[J]. Journal of London MathematicalSociety, 2001, 63(2): 99-116. 被引量:1
  • 5Lau K S, Wang X Y. Iterated function systems with a weak separationcondition[J]. Studia Mathematica, 2004, 161(3): 249-268. 被引量:1
  • 6Llorente M, Moran M. An algorithm for computing the centeredHausdorff measures of self-similar sets[J]. Chaos, Solitonsand Fractals, 2012, 45(2): 246-255. 被引量:1
  • 7Adcock B M, Jones K C, Reiter C A, et al. Iterated functionsystems with symmetry in the hyperbolic plane[J]. Computers& Graphics, 2000, 24(4): 791-796. 被引量:1
  • 8Chen N, Ding H, Tang M. Automatic generation of symmetricIFSs contracted in the hyperbolic plane[J]. Chaos, Solitons andFractals, 2009, 41(4): 829-842. 被引量:1
  • 9Van Loocke P. Non-linear iterated function systems and thecreation of fractal patterns over regular polygons[J]. Computers& Graphics, 2009, 33(6): 698-704. 被引量:1
  • 10何瑾,张国峰,戴树岭.迭代函数系统IFS码的获取方法及实现[J].计算机仿真,2010,27(8):222-226. 被引量:4

共引文献6

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部