期刊文献+

基于知识图谱的军事知识演化技术研究 被引量:3

Research on Evolvement of Military Knowledge Based on Knowledge Graphs
下载PDF
导出
摘要 针对不断新增的海量军事知识难以被有效利用的问题,论文研究如何利用现有的军事知识图谱,对新增的军事知识进行有效语义融合和组织。从复杂语义特征关联切入,研究了面向信息抽取的在线和迁移学习机制,从而完成对军事大数据知识体系的演化技术进行研究,并提出相应的技术框架和研究方案。 In view of the problem that the increasing amount of military knowledge is difficult to be effectively utilized,this paper studies how to use the existing military knowledge graph to effectively integrate and organize the new military knowledge.Starting from the association of complex semantic features,this paper studies the online and migration learning mechanism for information extraction,completes the research on the evolution technology of military large data knowledge system,and puts forward the corresponding technical framework and research scheme.
作者 陈辞 CHEN Ci(No.1 Navy Force Representative Bureau in Dalian,Dalian 116000)
出处 《舰船电子工程》 2019年第6期22-27,共6页 Ship Electronic Engineering
关键词 军事大数据 知识图谱演化机制 知识深度挖掘 military big data knowledge map evolution mechanism knowledge deep mining
  • 相关文献

参考文献5

二级参考文献61

  • 1杨楠,弓丹志,李忺,孟小峰.Web社区发现技术综述[J].计算机研究与发展,2005,42(3):439-447. 被引量:35
  • 2Scholkopf B, Herbrich R, Smola A J. A generalized representer theorem [C] //Proe of the 14th Annual Conf on Learning Theory. Berlin: Springer, 2001:416-426. 被引量:1
  • 3Blake C, Keogh E, Merz C J. UCI repository of machine learning databases [OL]. [2008-11-10]. http://www. ics. uci. edu/-mlearn/ MLRepository. html. 被引量:1
  • 4Bays D. UCI KDD archive [OL].[2008-11-10]. http:// kdd. ies. uci. edu/. 被引量:1
  • 5Crammer K, Dekel O, Shalev-Shwartz S, et al. Online passive-aggressive algorithms [C] //Thrun S, Saul L K, Scholkopf B, eds. Advances in Neural Information Processing Systems 16. Cambridge, MA: MIT Press, 2006. 被引量:1
  • 6Kivinen J, Smola A J, Williamson R C. Online learning with kernels [J]. IEEE Trans on Signal Processing, 2004, 52(8):2165-2176. 被引量:1
  • 7Herbster M, Pontil M. Prediction on a graph with a perceptron [C] //Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press, 2007:577-584. 被引量:1
  • 8Cheng L, Vishwanathan S V N, Schuurmans D, et al. Implicit online learning with kernels [C]//Scholkopf B, Platt J C, Hoffman T, eds. Advances in Neural Information Processing Systems 19. Cambridge, MA.. MIT Press, 2007 : 249-256. 被引量:1
  • 9McDonald R, Crammer K, Pereira F. Online large-margin training of dependency parsers [C] //Proc of the 43rd Annual Meeting of the Association for Computational Linguistics. Morristown, N J: ACL Press, 2005:91-98. 被引量:1
  • 10McDonald R. Discriminative sentence compression with soft syntactic constraints [C] //Proc of the llth Conf of the European Chapter of the Association for Computational Linguistics. Morristown, NJ: ACL Press, 2006:297-304. 被引量:1

共引文献1053

同被引文献34

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部