期刊文献+

基于互联网数据的大数据人才需求调研及培养思考 被引量:10

Big-Data Talents Demand Research and Cultivation Research Based on Internet Data
下载PDF
导出
摘要 大数据作为一门新兴技术,正在变革社会各领域的生产与生活。众多产业着手利用大数据技术提高生产,大数据人才需求激增,给大数据领域的人才培养提出巨大的挑战。然而当前国内高等院校对于大数据人才培养还处于探索阶段,专业人才供给缺口巨大,且供给结构不均衡。为了给高校大数据人才培养提供合适的建议,应用网络爬虫技术采集主流招聘网站上大数据相关岗位的招聘信息,基于采集到的互联网公开数据,针对大数据领域的相关企业、岗位和人才要求3个方面的数据进行分析,并结合当前大数据人才的市场需求特征提出高校培养大数据人才的思路。 Big data,as an emerging technology,is transforming production and life in all areas of society.Many industries have begun to use big-data technology to improve their production,which leads to the large demand of big-data talents.Huge demand brings great challenges to the training of big-data talents.However,the current training modes of big-data talents in domestic colleges and universities are still in the exploration stage,facing with a huge gap in the supply of professional talents and the problem of unbalanced supply structure.In order to provide suitable suggestions for the training of big-data talents,this research applies web crawler technology to collect recruitment information of big data from the mainstream recruitment websites.Based on the collected data,this paper analyzes the relevant information of big-data enterprises,big-data positions and the big-data talents demand.Based on the market demand characteristics of current big-data talents,this paper puts forward some ideas of training big-data talents for colleges and universities.
作者 饶绪黎 赵佳旭 陈志德 RAO Xuli;ZHAO Jiaxu;CHEN Zhide(Fuzhou Polytechnic,Fujian 350108,China;Fujian Normal University,Fujian 350007,China)
出处 《工业技术与职业教育》 2019年第2期26-30,共5页 Industrial Technology and Vocational Education
关键词 大数据 人才需求 调研 高校培养 启示 big data talents demand research training of colleges and universities inspirations
  • 相关文献

参考文献11

二级参考文献106

  • 1Agrawal D, Das S, Abbadi A. Big data and cloud computing: Current state and future opportunities. In Proc. the 14th International Conference on Extending Database Technology, March 2011, pp.530-533. 被引量:1
  • 2Glogor G, Silviu T. Oracle Exalytics: Engineered for speedof-thought analytics. Database Systems Journal, 2011, 2(4): 3-8. 被引量:1
  • 3Campbell D, Kakivaya G, Ellis N. Extreme scale with full SQL language support in Microsoft SQL Azure. In Proc. the 2010 ACM SIGMOD International Conference on Management of Data, June 2010, pp.1021-1024. 被引量:1
  • 4Yuan L, Wu L, You J, Chi Y. Rubato DB: A highly scalable staged grid database system for OLTP and big data applications. In Proc. the 23rd ACM International Conference on Information and Knowledge Management, November 2014, pp.1-1O. 被引量:1
  • 5Kallman R, Kimura H, Natkins J et al. H-store: A highperformance, distributed main memory transaction processing system. In Proc. the 34th International Conference on Ver-y Large Data Bases, August 2008, pp.1496-1499. 被引量:1
  • 6Stonebraker M, Abadi D, Batkin A et al. C-store: A columnoriented DBMS. In Proc. the 31st Inter-national Conference on Ver-y Large Data Bases, August 2005, pp.553-564. 被引量:1
  • 7DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo: Amazon's highly available key-value store. In Proc. the 21st ACM SIGOPS Symposium on Opemting Systems Pr-inciples, October 2007, pp.205-220. 被引量:1
  • 8Cooper BF, Ramakrishnan R, Srivastava U et al. PNUTS: Yahoo!'s hosted data serving platform. In Proc. the 34th International Conference on Ver-y Large Data Bases, August 2008, pp.1277-1288. 被引量:1
  • 9Lakshman A, Malik P. Cassandra: A decentralized structured storage system. ACM SIGOPS Opemting Systems Review, 2010, 44(2): 35-40. 被引量:1
  • 10Joshi A, Sam H, Charles L. Oracle NoSQL databasescalable, transactional key-value store. In Proc. the 2nd International Conference on Advances in Information. Mining and Management, October 2012, pp.75-78. 被引量:1

共引文献163

同被引文献59

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部