期刊文献+

基于动态自适应权重和柯西变异的蝙蝠优化算法 被引量:16

Bat Optimization Algorithm Based on Dynamically Adaptive Weight and Cauchy Mutation
下载PDF
导出
摘要 为了加快蝙蝠算法的收敛速度并提高寻优精度,提出一种基于动态自适应权重和柯西变异的蝙蝠优化算法。该算法在速度公式中加入了动态自适应权重,以动态地调整自适应权重的大小,加快算法的收敛速度。此外,该算法引入了柯西逆累积分布函数方法,在每次迭代时,能有效提高蝙蝠算法的全局搜索能力,避免陷入局部最优。对12个典型的测试函数进行仿真实验,结果表明,改进后的算法显著提高了寻优性能,具有较快的收敛速度和较高的寻优精度。 In order to speed up the convergence of bat algorithm and improve the accuracy of optimization,this paper proposed a bat optimization algorithm based on dynamic adaptive weight and Cauchy mutation.The algorithm adds dynamic adaptive weight to the speed formula and dynamically adjusts the size of the adaptive weight to speed up the convergence of the algorithm.In addition,the Cauchy inverse cumulative distribution function method can effectively improve the global search ability of bat algorithm and avoid falling into local optimum.The simulation results of 12 typical test functions show that the improved algorithm has better performance,faster convergence speed and higher optimization accuracy.
作者 赵青杰 李捷 于俊洋 吉宏远 ZHAO Qing-jie;LI Jie;YU Jun-yang;JI Hong-yuan(School of Software,Henan University,Kaifeng,Henan 475004,China;State Key Laboratory of Network and Exchange Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机科学》 CSCD 北大核心 2019年第B06期89-92,共4页 Computer Science
基金 赛尔网络下一代互联网创新项目(NGII20160204) 网络与交换技术国家重点实验室开放课题资助项目(SKLNST-2016-2-23)资助
关键词 蝙蝠算法 柯西变异 动态自适应权重 收敛对比 Bat algorithm Cauchy mutation Dynamically adaptive weight Convergence contrast
  • 相关文献

参考文献6

二级参考文献53

  • 1郝万君,强文义,胡林献,肖刚.基于改进粒子群算法的PID参数优化与仿真[J].控制工程,2006,13(5):429-432. 被引量:23
  • 2汪定伟,王俊伟,王洪峰,等.智能优化算法[M].高等教育出版社,2007. 被引量:2
  • 3Xin-She Yang,SiamakTalatahari. Bat algorithm for constrained optimization tasks[M]. Neural Comput& Applic,2013.22: 1239-1255. 被引量:1
  • 4Xin-She Yang. Bat algorithm for multi--objectiveoptimization[J].Int. J. Bio-lnspired Computation,2011.3(5):267-274. 被引量:1
  • 5Krishnanand K N, Ghose D. Glowworm swarm optimization for searching higher dimensional spaces [ J ]. Studies in Computational Intelligence, 2009,248 (2009) :61 - 75. 被引量:1
  • 6Alatas B. Acma:Artificial chemical reaction optimization algorithm for global optimization [ J ]. Expert Systems with Applications, 2011,38 (10) ,13170 - 13180. 被引量:1
  • 7Oftadeh R, Mahjoob M J, Shariatpanahi M. A novel meta-heuristic optimizationalgorithm inspired by Group Hunt-ing of Animals : Hunting Search[ J]. Computers & Mathematics with Applications, 2010, 60 (7) :2087-2098. 被引量:1
  • 8Alatas B. Chaotic harmony search algorithms[J]. Applied Mathematics and Computation ,2010,216 (9) ,2687 - 2699. 被引量:1
  • 9Yang X S. Firefly algorithms for multimodal optimization [ C ]//Pro- ceeding SAGA 09 Proceedings of the 5th international conference on Stochasticalgorithms : foundations and applications ,2009 : 169 - 178. 被引量:1
  • 10Gandomi A H, Yang X S, Alavi A H, et al. Bat algorithm for constrained optimization [ J ]. Neural Computing and Applications,2012 : 1 - 17. 被引量:1

共引文献105

同被引文献137

引证文献16

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部