期刊文献+

超像素分割及评价的最新研究进展 被引量:14

Recent Research Progress of Superpixel Segmentation and Evaluation
原文传递
导出
摘要 归纳并分析了超像素算法和评价指标的最新研究成果及最新应用;对比了多种超像素算法的边缘召回率、欠分割错误率和紧凑度等评价指标,分析了各自的优势和不足。当前的超像素方法在精度和效率上都有较大的提高,应用领域不断增加,但仍难以满足特殊应用领域的超像素性能要求,需要研究稳健性和适应性更好的超像素算法。 The latest research results and applications of superpixel algorithms and evaluation indexes are summarized. Many superpixel methods are compared by using the evaluation indexes such as boundary recall, under-segmentation error rate, and compactness. The corresponding advantages and limitations are also analyzed. The experimental results show that the current superpixel methods are greatly superior to the previous methods in terms of accuracy and efficiency, and the applications of superpixel algorithms are growing constantly. However, it remains difficult to satisfy the requirements of the superpixel performances in some special applications. Therefore, it is necessary to develop the new methods that are more robust and have better adaptability.
作者 罗学刚 吕俊瑞 彭真明 Luo Xuegang;Lu Junrui;Peng Zhenming(School of Mathematics and Computer Science, Panzhihua University, Panzhihua, Sichuan 617000, China;School of Information and Com m unicat ion Engineering, University of Electronic Science and Technology of China ,Chengdu, Sichuan 610054, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第9期45-55,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61571096,61775030) 四川省教育厅科学研究项目(15ZB0425) 中国科学院光束控制重点实验室基金(2017LBC003)
关键词 图像处理 超像素 图像分割 评价标准 区域分割 image processing superpixel image segmentation evaluation criterion region segmentation
  • 相关文献

参考文献7

二级参考文献111

  • 1苏金玲,王朝晖.基于Graph Cut和超像素的自然场景显著对象分割方法[J].苏州大学学报(自然科学版),2012,28(2):27-33. 被引量:7
  • 2刘跃虎,王飞,刘晓东,袁泽剑.一种特征矩阵的相似性度量方法及其在图像检索中的应用[J].模式识别与人工智能,2006,19(4):497-502. 被引量:9
  • 3刘宝生,闫莉萍,周东华.几种经典相似性度量的比较研究[J].计算机应用研究,2006,23(11):1-3. 被引量:44
  • 4REN Xiao-fimg, MAI,IK J. Learning a classification model for seg- mentation[ C ]//Proc of the 9th IEEE International Conference on Computer Vision. Washington DC :IEEE Computer Society ,2(X)3 : 10-17. 被引量:1
  • 5FEIZENSWALB P F, HUTFENLOCHER D P. Efficient graph-based image segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2):167-181. 被引量:1
  • 6SHI Jian-bo, MALIK J. Normalized cuts and image segmentation [C]//Proc of IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition. Washingtan DC:IEEE Camputer Socie- ty, 1997:731-737. 被引量:1
  • 7SHI Jian-bo, MAL1K J. Normalized cuts and image segmentation[ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(8) :888-905. 被引量:1
  • 8MOORE A, PRINCE S, WARRELI. J, et al. Superpixel lattices [ C]//Proc of IEEE Conference on Computer Vision and Pattern Rec- ognition. 2008 : 1-8. 被引量:1
  • 9LIU Ming-yu, TUZEL O, RAMALINGAM S,et al. Entropy rate su- perpixel segmentation [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. 2011:2097-2104. 被引量:1
  • 10VINCENT L, SOILLE P. Watersheds in digital spaces: an efficient algoritlml based on inlmeision simulations[ J]. IEEE Trans on Pat- tern Analysis and Machine Intelligence, 1991, 13 (6) : 583-598. 被引量:1

共引文献227

同被引文献90

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部