摘要
Lasota-Wazewska模型常被用来描述动物体内红血球的再生情况。本文针对一类Lasota-Wazewska模型,首先利用Banach压缩映射原理说明了在一定的条件下模型的严格正的渐近概周期解的存在唯一性,然后,构造合适的Lyapunov函数,说明这个渐近概周期解是全局指数渐近稳定的。本文结果能够使关于Lasota-Wazewska模型动力学行为的刻画更加丰富。
The Lasota-Wazewska model is often used to describe the regeneration of red blood cells in animals. Based on the Banach contraction mapping principle, the existence and uniqueness of strictly positive asymptotically almost periodic solution for a class of Lasota-Wazewska models are firstly obtained under some conditions, and then, by constructing a suitable Lyapunov function, the global exponential asymptotic stability of the asymptotically almost periodic solutions is shown. The results obtained in this paper can enrich the characterization of the dynamic behavior of the Lasota-Wazewska models.
作者
王丽
王博乾
WANG Li;WANG Boqian(School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710072, China)
出处
《应用数学学报》
CSCD
北大核心
2019年第3期297-304,共8页
Acta Mathematicae Applicatae Sinica
基金
陕西省自然科学基础研究计划面上项目(No:2017JM5140)资助