摘要
为了度量E-Bayes估计的误差,该文基于E-Bayes估计的定义,引入了E-Bayes估计的E-MSE(expected mean square error)的定义.对Poisson分布的参数,在不同损失函数(包括:平方损失,K-损失,加权平方损失)下分别给出了E-Bayes估计及其E-MSE的表达式.用MonteCarlo方法进行模拟比较提出的估计方法的性能,分析了一个真实数据集并进行了比较,所得结果比较基于E-MSE,结果表明该文提出的方法可行且便于应用.
In order to measure the error of E-Bayesian estimation, this paper the definition of E-MSE(expected mean square error) is introduced based on the definition of E-Bayesian estimation. For parameter of Poisson distribution, under different loss functions (including:squared error loss, K-loss and weighted squared error loss), the formulas of E-Bayesian estimation and formulas of E-MSE are given respectively. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and a real data set have been analysed for illustrative purposes, results are compared on the basis of E-MSE, the results show that the proposed method is feasible and convenient for application.
作者
韩明
Ming Han(School of Science, Ningbo University of Technology, Zhejiang Ningbo 315211)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第3期664-673,共10页
Acta Mathematica Scientia
基金
浙江省自然科学基金(LY18A010026)~~