摘要
直线电机地铁车辆电机处于弹性悬挂系统中,承受轮对的冲击和电机电磁力的作用。基于某直线电机车辆,建立了多刚体动力学模型。考虑电机电磁力作用,采用Simpack与Simulink联合仿真的方法,从直线电机气隙、车辆动力学性能和电机振动的角度研究分析了悬挂装置不同垂向刚度的影响。研究结果表明:直线电机悬挂装置垂向刚度对车辆曲线通过安全性和运行平稳性都会有影响,增大垂向刚度可以减小轮轨垂向力和垂向平稳性指标,横向平稳性指标会略有提升;小垂向刚度时气隙变化较大,增大垂向刚度可以在一定程度上减小气隙的变化和电机的振动,大垂向刚度会使电机的高频振动成分增加。综合考虑,建议电机悬挂装置中电机悬挂梁支撑节点垂向刚度范围为24~60 MN/m、吊杆节点垂向刚度范围为192~480 MN/m。
The motor of linear motor vehicle is in the elastic suspension system,which bears the impact of wheelset and electromagnetic force.Based on a linear motor vehicle,a multi-rigid-body dynamic model was established.Considering the electromagnetic force of the motor,Simpack and Simulink were used to simulate the effect of different vertical stiffness of the suspension device from the aspects of air gap of the linear motor,vehicle dynamic performance and motor vibration.The results show that the vertical stiffness of the suspension device of linear motor has an effect on the safety of vehicle curve passing and running smoothness.Increasing the vertical stiffness can reduce the vertical force of wheel and rail and the vertical smoothness index,while the lateral smoothness index will slightly increase.The air gap changes greatly when the vertical stiffness is small,and increasing the vertical stiffness can reduce the air gap change and the motor vibration,however,large vertical stiffness will increase the highfrequency vibration components of the motor.Considering comprehensively,it is suggested that the vertical stiffness of the support joints of the motor suspension beam in the motor suspension device should range from 24 MN/m to 60 MN/m and the vertical stiffness of derrick joints should range from 192 MN/m to 480 MN/m.
作者
商佳园
池茂儒
周橙
周小智
SHANG Jiayuan;CHI Maoru;ZHOU Cheng;ZHOU Xiaozhi(State Key Laboratory of Traction Power,Southwest Jiao tong University,Chengdu,Sichuan 610031,China)
出处
《机车电传动》
北大核心
2019年第3期125-128,共4页
Electric Drive for Locomotives
基金
国家自然科学基金青年项目(51605395)
国家科技支撑计划课题任务(2015BAG13B01-03)
关键词
直线电机
地铁车辆
垂向刚度
车辆动力学
电磁力
联合仿真
linear motor
metro vehicle
vertical stiffness
vehicle dynamics
electromagnetic force
co-simulation