期刊文献+

大规模宽频弹性动力学分析的快速定向压缩边界元法 被引量:1

Fast Directional Boundary Element Method for Large Scale Wideband Elastodynamic Analysis
原文传递
导出
摘要 发展一种大规模宽频弹性动力学分析的快速定向压缩边界元法.证明弹性动力学核函数具有定向低秩特性,为采用快速定向压缩算法提供理论基础.根据S波的波数,将节点之间的相互作用划分为低频相互作用和高频相互作用,并将后者进一步划分为与多个楔形区.在楔形区上,可以采用核函数的定向低秩特性进行快速计算.低频相互作用与核无关快速多极边界元法中计算方法相同,不同方向楔形区上的变换矩阵可以采用坐标系旋转的方法进行快速计算.可对任意频率进行快速谐响应分析.数值算例表明:该方法可以将宽频弹性动力学问题计算复杂度降低到O(Nlog~αN).与卷积求积边界元法相结合,也可以应用于弹性动力学瞬态分析. A fast directional boundary element method for large scale wideband elastodynamic analysis is developed. Directional low rank property of elastodynamic kernels is shown which serves as the theoretical basis of its fast directional algorithm. By only considering S-wave number, interactions of different nodes are divided into low-frequency interactions and high-frequency interactions, and the latter is further divided into interactions with directional wedges on which the directional low rank property is applied. Low-frequency interactions are computed in same manner with that in kernel independent fast multipole BEM for elastodynamics, and translation matrices for different directional wedges are calculated efficiently by coordinate frame rotations. Thus harmonic responses for any frequencies can be computed efficiently. Numerical examples show that the computational complexity for wideband elastodynamic problems are successfully brought down to O(Nlog^αN). It can also be applied to transient elastodynamic analysis combined with convolution quadrature method.
作者 曹衍闯 校金友 文立华 王政 CAO Yanchuang;XIAO Jinyou;WEN Lihua;WANG Zheng(Beijing Institute of Applied Physics and Computational Mathematics,Beijing 100094,China;Northwestern Polytechnical University,Xi'an 710072,Shaanxi,China)
出处 《计算物理》 EI CSCD 北大核心 2019年第3期305-316,共12页 Chinese Journal of Computational Physics
基金 科工局基础研究重点课题(B1520132012)资助项目
关键词 边界元法 弹性动力学 快速定向压缩算法 宽频 boundary element method elastodynamics fast directional algorithm wideband
  • 相关文献

参考文献2

二级参考文献14

  • 1Schenck H. Improved integral formulation for acoustic radiation problems [ J]. J Acous Soc Am, 1968,44:41 -58. 被引量:1
  • 2Burton A J,Miller G F. The application of the integral equation methods to the numerical solution of some exterior boundary- value problems [ C ]//Proceedings of the Royal Society of London, Series A, Math Phys Sci, 1971,323 ( 1553 ) :201 - 210. 被引量:1
  • 3Greengard L, Rokhlin V. A fast algorithm for particle simulations [J]. J Comp Phys, 1987, 73:325 -348. 被引量:1
  • 4Borm S, Grasedyck L, Hackbusch W. Introduciton to hierarchical matrices with applications [ J ]. Enginneering Analysis with Boundary Elements ,2003,27:405 - 422. 被引量:1
  • 5Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numerical algorithms [ J ]. Comm Pure Appl Math, 1991,37:141 - 183. 被引量:1
  • 6Xiao J, Tausch J, Hu Y. A-posteriori compression of wavelet-BEM matrices [ J ]. Computational Mechanics,2009,44 ( 5 ) : 705 - 715. 被引量:1
  • 7Shen L, Liu Y J. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation [ J ]. Computational Mechanics,2007,40:461 - 472. 被引量:1
  • 8CUDA Programming Guide Version 2.3. [ August 2009 ] http://www, nvidia, com/object/cuda_develop, html. 被引量:1
  • 9Takahashi T, Hamada T. GPU-accelerated boundary element method for Helmhohz equation in three dimensions [ J ]. International Journal for Numerical Methods in Engineering,2009,80(10) :1295 -1321. 被引量:1
  • 10Saad Y. Iterative methods for sparse linear systems[ M]. 2ed.科学出版社,2009:164-185. 被引量:1

共引文献11

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部