期刊文献+

基于改进卷积神经网络的单幅图像物体重建方法 被引量:3

SINGLE IMAGE OBJECT RECONSTRUCTION METHOD BASED ON IMPROVED CONVOLUTIONAL NEURAL NETWORK
下载PDF
导出
摘要 为了提高基于图像的三维重建的重建效果,基于深度学习的方法已经成为近年来研究的重点。针对目前存在的方法中特征提取效果差、重建细节缺失且计算量巨大的问题,提出一种改进卷积神经网络的单个物体重建方法。通过加入改进的Inception resnet模块来提升网络的特征提取能力,采用多种网络结构提取多特征,通过多特征依次输入3D-LSTM模块中以增强单幅图像的重建效果。实验结果表明,该方法不仅能够得到更好的重建效果,重建出更多的细节,同时在训练中花费更少的时间。 To improve the performance of 3D reconstruction,methods based on deep learning have been the main topic of the research.Aiming at the problems of poor feature extraction effect,lack of reconstruction detailsand huge computational load,we proposed a 3D objects reconstruction method from a single image based on improved convolutional neural network.The feature extraction capability of the network was improved by adding modules that combine residual connectionsand Inception.We used multi-features extracted by multi-network structure,and input it into 3D-LSTM module in turn to enhance the reconstruction effect of a single image.The experimental results show that our method can not only perform better in reconstruction,but also spend less time in training.
作者 张玉麒 陈加 叶立志 田元 夏丹 陈亚松 Zhang Yuqi;Chen Jia;Ye Lizhi;Tian Yuan;Xia Dan;Chen Yasong(College of Educational Information Technology, Central China Normal University, Wuhan 430079, Hubei, China)
出处 《计算机应用与软件》 北大核心 2019年第6期190-195,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61605054) 湖北省自然科学基金项目(2014CFB659) 华中师范大学中央高校基本科研业务费项目(CCNU19QD007,CCNU19TD007)
关键词 卷积神经网络 三维重建 单幅图像 计算机视觉 Convolutional neural network 3D reconstruction Single image Computer vision
  • 相关文献

参考文献2

二级参考文献25

  • 1李豪杰,林守勋,张勇东.基于视频的人体运动捕捉综述[J].计算机辅助设计与图形学学报,2006,18(11):1645-1651. 被引量:31
  • 2邓宇,李振波,李华.基于视频的三维人体运动跟踪系统的设计与实现[J].计算机辅助设计与图形学学报,2007,19(6):769-774. 被引量:9
  • 3Moeslund T B,Hilton A,Kruger V.A survey of advances invision-based human motion capture and analysis[J].Computer Vision and Image Understanding,2006,104(2/3):90-126. 被引量:1
  • 4De Aguiar E,Stoll C,Theobalt C,et al.Performance capturefrom sparse multi-view video[J].ACM Transactions onGraphics,2008,27(3):1-10. 被引量:1
  • 5Bilir S C,Yemez Y.Time varying surface reconstruction frommultiview video[C]//Proceedings of IEEE InternationalConference on Shape Modeling and Applications.Piscataway:IEEE Computer Society Press,2008:47-51. 被引量:1
  • 6Poppe R.Vision-based human motion analysis:an overview[J].Computer Vision and Image Understanding,2007,108(1/2):4-18. 被引量:1
  • 7Ménier C,Boyer E,Raffin B.3Dskeleton-based body poserecovery[C]//Proceedings of 3rd International Symposium on3D Data Processing,Visualization and Transmission.Piscataway:IEEE Computer Society Press,2006:389-396. 被引量:1
  • 8Takahashi K,Nagasawa Y,Hashimoto M.Remarks onmarkerless human motion capture from voxel reconstructionwith simple human model[C]//Proceedings of IEEE/RSJInternational Conference on Intelligent Robots and Systems.Piscataway:IEEE Computer Society Press,2008:755-760. 被引量:1
  • 9Gall J,Rosenhahn B,Brox T,et al.Optimization andfiltering for human motion capture[J].International Journalof Computer Vision,2010,87(1/2):75-92. 被引量:1
  • 10Corazza S,Mündermann L,Gambaretto E,et al.Markerlessmotion capture through visual hull,articulated ICP andsubject specific model generation[J].International Journal ofComputer Vision,2010,87(1/2):156-169. 被引量:1

共引文献32

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部