期刊文献+

基于蒙特卡洛模拟法的管网节点压力分析 被引量:1

Node Pressure Analysis of Water Distribution System based on Monte Carlo Simulation Method
下载PDF
导出
摘要 探讨需水量不确定性及监测点布置对节点压力波动量的影响。采用蒙特卡洛模拟法,经算例计算得到需水量不确定性情况下的节点压力波动区间,并分析监测点数量与空间分布对节点压力的影响。结果表明:需水量不确定性与节点压力波动量呈正相关;压力监测点的合理布置有利于准确评估节点压力。 This paper discusses the influence about uncertainty of water demand and layout of monitoring points on nodal pressure fluctuation.By using Monte Carlo simulation method,the fluctuation interval of nodal pressure under the uncertainty of water demand is obtained by an example,and the influence of the number and spatial distribution of monitoring points on nodal pressure is analyzed.The results show that the uncertainty of water demand is positively correlated with the fluctuation of nodal pressure,and reasonable layout of monitoring points on nodal pressure is beneficial to the corresponding evaluation of nodal pressure.
作者 孟煜飞 何必仕 MENG Yufei;HE Bishi(school of Automation,Hangzhou Dianzi Unicersity,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2019年第3期60-64,共5页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 国家自然科学基金资助项目(U1509205)
关键词 蒙特卡洛模拟 需水量不确定性 节点压力 Monte Carlo simulation uncertainty of water demand nodal pressure
  • 相关文献

参考文献3

二级参考文献11

  • 1王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究[J].环境科学,2006,27(1):24-30. 被引量:44
  • 2Thiemann M,Trosset M,Gupta H,et al. Bayesian recur- sire parameter estimation for hydrologic models [ J ]. Water Resour Res,2001,37(10) :2521 -2535. 被引量:1
  • 3Kapelan Z S,Savic D A,Wahers G A. Multiobjective sampling design for water distribution model calibration [J]. J Water Resour Planning Manage,2003,129 (6) : 466 - 479. 被引量:1
  • 4Aronica G, Bates P D, Horritt M S. Assessing the uncer- tainty in distributed model predictions using observed bi- nary pattern information within GLUE [ J ]. Hydrol Processes ,2002,16:2001 - 2016. 被引量:1
  • 5Vrugt J A,Bouten W,Gupta H V, et al. Toward im- proved identifiability of hydrologic model parameters: the information content of experimental data[ J]. Water Re- sour Res,2002,35(12) :1312 - 1316. 被引量:1
  • 6Gupta H,Thiemann M,Trosset M,et al. Reply to com- ment by K. Beven and P. Young on "Bayesian recursive parameter estimation for hydrologic models" [ J ~. Water Resour Res,2003,39 ( 5 ) : 11 - 17. 被引量:1
  • 7Misirli F, Gupta H V, Sorooshian S, et al. Bayesian re- cursive estimation of parameter and output uncertainty for watershed models [ A ~. Calibration of Watershed Mod- els, Water Science and Application,v. 6 [ C ]. Washing- ton : AGU,2003. 被引量:1
  • 8Savic D A. Single-objective vs. multiobjective optimisa- tion for integrated decision support [ AI. Proceeding of the First Biennial Meeting of the International Environ- mental Modelling and Software Society [ C 1- LuganoL: iEMSs ,2002. 被引量:1
  • 9Farmani R,Savic D A,Walters G A. Evolutionary multi- objective optimization in water distribution network de- sign[J]. EngOptim,2005,37(2):167-183. 被引量:1
  • 10Babayan A V, Kapelan design of robust water mand uncertainty [ J ]. age, 2005,131 ( 5 ) : 375 Z,Savic D A,et al. Least cost distribution networks under de- J Water Resour Planning Man- - 382. 被引量:1

共引文献7

同被引文献26

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部