期刊文献+

基于P波高斯模型的辅助房颤判别 被引量:1

Auxiliary atrial fibrillation discrimination based on P wave Gaussian model
下载PDF
导出
摘要 为弥补房颤诊断中不能通过心跳节律确诊的缺陷,提出一种基于高斯模型的识别心电信号(electrocardiogram,ECG)中P波的策略。针对实际病患的P波形态的多样性,分别建立3类P波的高斯混合模型(Gaussian mixture model,GMM),利用马氏距离(Mahalanobis distance,MD)统计出P波的阈值边界,利用窗口滑动方法获取ECG时间段波形,进行高斯模型计算,其结果与3类P波高斯模型比较,从而识别P波。采用MIT-BIH中的Atrial Fibrillation Database为实验数据进行测试,实验结果表明,圆滑P波、尖耸P波、双峰P波以及水平直线波形的识别准确率分别为80.50%、84.36%、67%和100%,验证了模型和算法的可行性。 To make up for the defects that heartbeat rhythm can not be used as evidence to atrial fibrillation diagnosis, a strategy based on Gaussian model to identify P wave in electrocardiogram (ECG) was proposed. According to the diversity of P wave patterns of actual patients, three kinds of P-wave Gaussian mixture model (GMM) were established, and the threshold of P wave was calculated using Mahalanobis distance (MD). The sliding method was used to acquire the waveform of the ECG time period and to perform Gaussian model calculation. The results were compared with that of the three types of P-wave Gaussian models to identify the P-wave. Experimental data were tested using Atrial Fibrillation Database in MIT-BIH. Experimental results show that the recognition accuracy of smooth P wave, sharp P wave, double peak P wave and horizontal straight line waveform are 80.50%, 84.36%, 67%, and 100% respectively, verifying the feasibility of the model and algorithm.
作者 郑刚 王贺贺 ZHENG Gang;WANG He-he(School of Computer Science and Engineering,Tianjin University of Technology,Tianjin 300384,China)
出处 《计算机工程与设计》 北大核心 2019年第6期1713-1717,共5页 Computer Engineering and Design
基金 天津市自然科学基金项目(16JCYBJC15300)
关键词 心电信号 心房颤动 P波高斯模型 马氏距离 高斯混合模型 electrocardiogram(ECG) atrial fibrillation(AF) P wave Gaussion model Mahalanobis distance(MD) Gaussian mixture model (GMM)
  • 相关文献

参考文献3

二级参考文献22

  • 1成转鹏,张跃.远程心电实时监护终端的设计与实现[J].计算机工程,2007,33(11):264-266. 被引量:29
  • 2Acharya UR, Joseph KP, Kannathal N,et al. Heart rate varia-bility :a review [ J]. Medical & Biological Engineering &Computing, 2006 , 44(12) :1031-1051. 被引量:1
  • 3Mohebbi M, Ghassemian H. Prediction of paroxysmal atrial fi-brillation based on non-linear analysis and spectrum and bis-pectrum features of the heart rate variability signal [ J]. Corn-put Methods Programs Biomed, 2012 , 105(1) : 40-49. 被引量:1
  • 4Shin DG, Yoo CS’Yi SH,et al. Prediction of paroxysmal at-rial fibrillation using nonlinear analysis of the R-R interval dy-namics before the spontaneous onset of atrial fibrillation [ J].Circulation Journal, 2006, 70(1) : 94-99. 被引量:1
  • 5Bilgin S,Olak OH,Koklukaya E, et al. Efficient solution forfrequency band decomposition problem using wavelet packet inHRV [ J]. Digital Signal Processing, 2008, 18 (6): 892-899. 被引量:1
  • 6Asl BM, Setarehdan SK, Mohebbi M. Support vector ma-chine-based arrhythmia classification using reduced features ofheart rate variability signal [ J]. Artif Intell Med,2008,44(1): 51-64. 被引量:1
  • 7Ler Y, Kuntalp M. Combining classical HRV indices withwavelet entropy measures improves to performance in diagno-sing congestive heart failure [ J]. Computers in Biology andMedicine, 2007,37(10) : 1502-1510. 被引量:1
  • 8Chesnokov YV. Complexity and spectral analysis of the heartrate variability dynamics for distant prediction of paroxysmalatrial fibrillation with artificial intelligence methods [ J]. Arti-ficial Intelligence In Medicine, 2008 , 43(2) : 151-165. 被引量:1
  • 9Chen SW. A wavelet-based heart rate variability analysis forthe study of nonsustained ventricular tachycardia [ J]. Bio-medical Engineering, IEEE Transactions on, 2002,49(7):736-742. 被引量:1
  • 10Laguna P, Moody GB, Mark RG. Power spectral density ofunevenly sampled data by least-square analysis : performanceand application to heart rate signals [ J]. IEEE Trans BiomedEng, 1998, 45(6) : 698-715. 被引量:1

共引文献6

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部