期刊文献+

卷积神经网络应用于先心病心音信号分类研究 被引量:16

Research on Classification of Congenital Heart Disease Heart Sound Signal Using Convolutional Neural Network
下载PDF
导出
摘要 心脏听诊是先心病初诊和筛查的主要手段。传统心音分类算法普适性差,过程复杂,不利于将来实时化决策。采用1800个心音信号对几种时间序列分类的主流深度学习网络进行训练,结果显示循环神经网络易出现过拟合;长短时记忆网络分类损失值0.257,准确率0.872;卷积神经网络损失值0.25,准确率0.896。实验表明卷积神经网络相比较其他两种网络具备更大的潜力。基于卷积神经网络的先心病分类算法,因训练样本量大,使网络普适性得到了保证。与其他分类器相比,CNN的另一个优势是其可自动提取特征。该研究有望用于机器辅助听诊。 Cardiac auscultation is the basic way for primary diagnosis and screening of Congenital Heart Disease(CHD). In this paper, 1, 800 heart sound signals are used to train the mainstream deep learning networkssuch as RNN(Recurrent Neural Network), LSTM(Long Short-Term Memory network), and CNN(Convolutional Neural Networks). The result shows that the RNN is prone to over- fitting. The LSTM network losses value of 0.257 and the accuracy of 0.872. The CNN losses value of 0.25 and the accuracy of 0.896. The CNN has greater potential than other two networks. The classification algorithm of CHD based on CNN has the universal applicability due to big training samples. Compared with ordinary networks the CNN has an advantage that is it can extract features automatically. This work is hopeful to be used in machine assisted auscultation of CHD.
作者 谭朝文 王威廉 宗容 潘家华 朱莉莉 TAN Zhaowen;WANG Weilian;ZONG Rong;PAN Jiahua;ZHU Lili(School of Information Science and Engineering,Yunnan University,Kunming 650091,China;Yunnan Fuwai Cardiovascular Disease Hospital,Kunming 650102,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第12期174-180,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61261008) 2018云南省重大科技专项(No.2018ZF017)
关键词 先心病 深度学习 机器辅助听诊 卷积神经网络 Congenital Heart Disease deep learning machine-assisted auscultation convolutional neural network
  • 相关文献

参考文献5

二级参考文献91

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105. 被引量:1
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42. 被引量:1
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966. 被引量:1
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473. 被引量:1
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901. 被引量:1
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229. 被引量:1
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575. 被引量:1
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400. 被引量:1
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898. 被引量:1
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708. 被引量:1

共引文献2175

同被引文献114

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部