摘要
采用低温共烧陶瓷(Low Temperature Co-fired Ceramics,LTCC)工艺实现了爆炸箔起爆芯片的一体化集成制备。采用丝网印刷的方式制备了厚度为5μm的Au桥箔(300μm×300μm);采用25μm和50μm两种厚度的生瓷片作为爆炸箔起爆芯片的飞片,设计了圆形(Ф=400 μm)和方形(L×W=300 μm×300 μm)的两种加速膛形状的爆炸箔起爆芯片。在0.22 μF电容放电条件下,研究了Au桥箔的电爆性能。通过光子多普勒测速技术分析了陶瓷飞片的速度特征及其运动过程中的形貌。结果表明,在发火电压1.8kV下,Au桥箔的能量利用率最大;飞片的终态速度随着发火电压的增加而增大;在相同的发火条件下,飞片经方形加速膛加速后的出口速度比圆形加速膛高出106 ~313 m·s^-1;另外,陶瓷飞片越厚,飞片在飞行过程中的运动形貌保持得越完整。该工艺制备的爆炸箔起爆芯片可成功点燃硼/硝酸钾(BPN)点火药,并起爆六硝基芪(HNS)炸药。LTCC爆炸箔起爆芯片(50μm厚陶瓷飞片,圆形加速膛)的最小点火电压为1.4kV,最小起爆电压为2.5kV。
Low-temperature co-fired ceramic(LTCC)technology was employed to realize the integrated fabrication of exploding foil initiation chip. 5 μm thick Au bridge foil(300 μm×300 μm)was prepared by screen printing,using raw porcelain sheets of 25 μm and 50 μm thickness as the flyers for the chip. Two kinds of chips with the barrel shape of circular(Φ=400 μm)and square(L×W=300 μm×300 μm)were obtained. The electrical explosion characteristics of Au bridge foil were studied under the discharge of 0.22 μF capacitor. The velocity characteristics of the ceramic flyer and its morphology in motion process were analyzed by photon Doppler velocimetry. Results show that the maximum energy utilization rate of Au bridge foil at 1.8 kV,and the final speed of flyer increases with the increase of the firing voltage. Besides,the outlet velocity of flyer in square barrel is 106-313 m ·s^-1,which is higher than that in circular barrel at the same firing condition. In addition,the thicker of the ceramic flyer,the more complete it will be during the course of flying. The exploding foil initiation chip prepared by the LTCC technology can successfully detonate the HNS explosive and ignite the BPN ignition powder. The minimum detonation voltage and minimum ignition voltage of LTCC exploding foil initiation chip(50 μm thick ceramic flyer,circular barrel)are 2.5 kV and 1.4 kV, respectively.
作者
张秋
陈楷
朱朋
徐聪
覃新
杨智
沈瑞琪
ZHANG Qiu;CHEN Kai;ZHU Peng;XU Cong;QIN Xin;YANG Zhi;SHEN Rui?qi(School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;Beijing Institute of Aerospace Systems Engineering,Beijing 100076,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2019年第6期448-455,I0004,共9页
Chinese Journal of Energetic Materials
基金
江苏省自然科学基金(BK20151486)